
On Nested Justification Systems

Simon Marynissen1,2, Jesse Heyninck2,3, Bart Bogaerts2 and Marc Denecker1
1KU Leuven, 2Vrije Universiteit Brussel and 3University of Cape Town and CAIR

International Conference on Logic Programming
August 3rd, 2022



Summary

SUMMARY

Nested Justifications [DBS15]

Bst :

p← t; q ← t; s← p, r;

BKK :
{

r ← p, q; r ← s, p;
r ← p, s r ← r

}
Compression:

Bst :

p← t; q ← t;
s← p, p, q; s← p, s, p;
s← p, p, s; s← p, u;


Disadvantages:
I “Explanations” not in terms of input rules
I Only defined for parametric inner systems

Merge:

Bst.KK :


p← t; q ← t;
s← p, r;
r ← p, q; r ← s, p;
r ← p, s r ← r


Properties:
I Defined for (almost) all branch evaluations
I Justifications use original rules
I Uses new branch evaluation

Theorem
SVt

Compress(JS)(x, I) = SVt
Merge(JS)(x, I),

under minor restrictions

Bart Bogaerts (VUB) On Nested Justification Systems ICLP ’22 1/24



Summary

SUMMARY

Nested Justifications [DBS15]

Bst :

p← t; q ← t; s← p, r;

BKK :
{

r ← p, q; r ← s, p;
r ← p, s r ← r

}
Compression:

Bst :

p← t; q ← t;
s← p, p, q; s← p, s, p;
s← p, p, s; s← p, u;


Disadvantages:
I “Explanations” not in terms of input rules
I Only defined for parametric inner systems

Merge:

Bst.KK :


p← t; q ← t;
s← p, r;
r ← p, q; r ← s, p;
r ← p, s r ← r


Properties:
I Defined for (almost) all branch evaluations
I Justifications use original rules
I Uses new branch evaluation

Theorem
SVt

Compress(JS)(x, I) = SVt
Merge(JS)(x, I),

under minor restrictions

Bart Bogaerts (VUB) On Nested Justification Systems ICLP ’22 1/24



Summary

SUMMARY

Nested Justifications [DBS15]

Bst :

p← t; q ← t; s← p, r;

BKK :
{

r ← p, q; r ← s, p;
r ← p, s r ← r

}
Compression:

Bst :

p← t; q ← t;
s← p, p, q; s← p, s, p;
s← p, p, s; s← p, u;


Disadvantages:
I “Explanations” not in terms of input rules
I Only defined for parametric inner systems

Merge:

Bst.KK :


p← t; q ← t;
s← p, r;
r ← p, q; r ← s, p;
r ← p, s r ← r


Properties:
I Defined for (almost) all branch evaluations
I Justifications use original rules
I Uses new branch evaluation

Theorem
SVt

Compress(JS)(x, I) = SVt
Merge(JS)(x, I),

under minor restrictions

Bart Bogaerts (VUB) On Nested Justification Systems ICLP ’22 1/24



Summary

SUMMARY

Nested Justifications [DBS15]

Bst :

p← t; q ← t; s← p, r;

BKK :
{

r ← p, q; r ← s, p;
r ← p, s r ← r

}
Compression:

Bst :

p← t; q ← t;
s← p, p, q; s← p, s, p;
s← p, p, s; s← p, u;


Disadvantages:
I “Explanations” not in terms of input rules
I Only defined for parametric inner systems

Merge:

Bst.KK :


p← t; q ← t;
s← p, r;
r ← p, q; r ← s, p;
r ← p, s r ← r


Properties:
I Defined for (almost) all branch evaluations
I Justifications use original rules
I Uses new branch evaluation

Theorem
SVt

Compress(JS)(x, I) = SVt
Merge(JS)(x, I),

under minor restrictions

Bart Bogaerts (VUB) On Nested Justification Systems ICLP ’22 1/24



Summary

SUMMARY

Nested Justifications [DBS15]

Bst :

p← t; q ← t; s← p, r;

BKK :
{

r ← p, q; r ← s, p;
r ← p, s r ← r

}
Compression:

Bst :

p← t; q ← t;
s← p, p, q; s← p, s, p;
s← p, p, s; s← p, u;


Disadvantages:
I “Explanations” not in terms of input rules
I Only defined for parametric inner systems

Merge:

Bst.KK :


p← t; q ← t;
s← p, r;
r ← p, q; r ← s, p;
r ← p, s r ← r


Properties:
I Defined for (almost) all branch evaluations
I Justifications use original rules
I Uses new branch evaluation

Theorem
SVt

Compress(JS)(x, I) = SVt
Merge(JS)(x, I),

under minor restrictions

Bart Bogaerts (VUB) On Nested Justification Systems ICLP ’22 1/24



Summary

SUMMARY

Nested Justifications [DBS15]

Bst :

p← t; q ← t; s← p, r;

BKK :
{

r ← p, q; r ← s, p;
r ← p, s r ← r

}
Compression:

Bst :

p← t; q ← t;
s← p, p, q; s← p, s, p;
s← p, p, s; s← p, u;


Disadvantages:
I “Explanations” not in terms of input rules
I Only defined for parametric inner systems

Merge:

Bst.KK :


p← t; q ← t;
s← p, r;
r ← p, q; r ← s, p;
r ← p, s r ← r


Properties:
I Defined for (almost) all branch evaluations
I Justifications use original rules
I Uses new branch evaluation

Theorem
SVt

Compress(JS)(x, I) = SVt
Merge(JS)(x, I),

under minor restrictions

Bart Bogaerts (VUB) On Nested Justification Systems ICLP ’22 1/24



Summary

SUMMARY

Nested Justifications [DBS15]

Bst :

p← t; q ← t; s← p, r;

BKK :
{

r ← p, q; r ← s, p;
r ← p, s r ← r

}
Compression:

Bst :

p← t; q ← t;
s← p, p, q; s← p, s, p;
s← p, p, s; s← p, u;


Disadvantages:
I “Explanations” not in terms of input rules
I Only defined for parametric inner systems

Merge:

Bst.KK :


p← t; q ← t;
s← p, r;
r ← p, q; r ← s, p;
r ← p, s r ← r


Properties:
I Defined for (almost) all branch evaluations
I Justifications use original rules
I Uses new branch evaluation

Theorem
SVt

Compress(JS)(x, I) = SVt
Merge(JS)(x, I),

under minor restrictions

Bart Bogaerts (VUB) On Nested Justification Systems ICLP ’22 1/24



Summary

SUMMARY

Nested Justifications [DBS15]

Bst :

p← t; q ← t; s← p, r;

BKK :
{

r ← p, q; r ← s, p;
r ← p, s r ← r

}
Compression:

Bst :

p← t; q ← t;
s← p, p, q; s← p, s, p;
s← p, p, s; s← p, u;


Disadvantages:
I “Explanations” not in terms of input rules
I Only defined for parametric inner systems

Merge:

Bst.KK :


p← t; q ← t;
s← p, r;
r ← p, q; r ← s, p;
r ← p, s r ← r


Properties:
I Defined for (almost) all branch evaluations
I Justifications use original rules
I Uses new branch evaluation

Theorem
SVt

Compress(JS)(x, I) = SVt
Merge(JS)(x, I),

under minor restrictions

Bart Bogaerts (VUB) On Nested Justification Systems ICLP ’22 1/24



Summary

SUMMARY

Nested Justifications [DBS15]

Bst :

p← t; q ← t; s← p, r;

BKK :
{

r ← p, q; r ← s, p;
r ← p, s r ← r

}
Compression:

Bst :

p← t; q ← t;
s← p, p, q; s← p, s, p;
s← p, p, s; s← p, u;


Disadvantages:
I “Explanations” not in terms of input rules
I Only defined for parametric inner systems

Merge:

Bst.KK :


p← t; q ← t;
s← p, r;
r ← p, q; r ← s, p;
r ← p, s r ← r


Properties:
I Defined for (almost) all branch evaluations
I Justifications use original rules
I Uses new branch evaluation

Theorem
SVt

Compress(JS)(x, I) = SVt
Merge(JS)(x, I),

under minor restrictions

Bart Bogaerts (VUB) On Nested Justification Systems ICLP ’22 1/24



Summary

SUMMARY

Nested Justifications [DBS15]

Bst :

p← t; q ← t; s← p, r;

BKK :
{

r ← p, q; r ← s, p;
r ← p, s r ← r

}
Compression:

Bst :

p← t; q ← t;
s← p, p, q; s← p, s, p;
s← p, p, s; s← p, u;


Disadvantages:
I “Explanations” not in terms of input rules
I Only defined for parametric inner systems

Merge:

Bst.KK :


p← t; q ← t;
s← p, r;
r ← p, q; r ← s, p;
r ← p, s r ← r


Properties:
I Defined for (almost) all branch evaluations
I Justifications use original rules
I Uses new branch evaluation

Theorem
SVt

Compress(JS)(x, I) = SVt
Merge(JS)(x, I),

under minor restrictions

Bart Bogaerts (VUB) On Nested Justification Systems ICLP ’22 1/24



Summary

SUMMARY

Nested Justifications [DBS15]

Bst :

p← t; q ← t; s← p, r;

BKK :
{

r ← p, q; r ← s, p;
r ← p, s r ← r

}
Compression:

Bst :

p← t; q ← t;
s← p, p, q; s← p, s, p;
s← p, p, s; s← p, u;


Disadvantages:
I “Explanations” not in terms of input rules
I Only defined for parametric inner systems

Merge:

Bst.KK :


p← t; q ← t;
s← p, r;
r ← p, q; r ← s, p;
r ← p, s r ← r


Properties:
I Defined for (almost) all branch evaluations
I Justifications use original rules
I Uses new branch evaluation

Theorem
SVt

Compress(JS)(x, I) = SVt
Merge(JS)(x, I),

under minor restrictions

Bart Bogaerts (VUB) On Nested Justification Systems ICLP ’22 1/24



Summary

SUMMARY

Nested Justifications [DBS15]

Bst :

p← t; q ← t; s← p, r;

BKK :
{

r ← p, q; r ← s, p;
r ← p, s r ← r

}
Compression:

Bst :

p← t; q ← t;
s← p, p, q; s← p, s, p;
s← p, p, s; s← p, u;


Disadvantages:
I “Explanations” not in terms of input rules
I Only defined for parametric inner systems

Merge:

Bst.KK :


p← t; q ← t;
s← p, r;
r ← p, q; r ← s, p;
r ← p, s r ← r


Properties:
I Defined for (almost) all branch evaluations
I Justifications use original rules
I Uses new branch evaluation

Theorem
SVt

Compress(JS)(x, I) = SVt
Merge(JS)(x, I),

under minor restrictions

Bart Bogaerts (VUB) On Nested Justification Systems ICLP ’22 1/24



Summary

OUTLINE

1. Justification Theory: Motivation & Definitions

2. Two Flavours of Justifications

3. Nested Justification Systems
1. Motivation
2. Definition

4. Two Characterizations of Semantics
1. Compression
2. Merge
3. Equivalence

5. Conclusion

Bart Bogaerts (VUB) On Nested Justification Systems ICLP ’22



Justification Theory: Motivation & Definitions

OUTLINE

1. Justification Theory: Motivation & Definitions

2. Two Flavours of Justifications

3. Nested Justification Systems
1. Motivation
2. Definition

4. Two Characterizations of Semantics
1. Compression
2. Merge
3. Equivalence

5. Conclusion

Bart Bogaerts (VUB) On Nested Justification Systems ICLP ’22



Justification Theory: Motivation & Definitions

JUSTIFICATION THEORY: A UNIFYING FRAMEWORK

Unification of formalisms
I Logic Programming
I Abstract Argumentation
I Nested least and greatest fixpoint

definitions

Simple and unified way of defining and
studying semantics
I Stable
I Well-founded
I Supported
I Kripke-Kleene

The only thing to define is an evaluation
of branches

Core idea: semantics is defined in terms of explanations why facts hold.
Not just relevant for theory; justifications show up in unexpected places

Bart Bogaerts (VUB) On Nested Justification Systems ICLP ’22 2/24



Justification Theory: Motivation & Definitions

JUSTIFICATION THEORY: A UNIFYING FRAMEWORK

Unification of formalisms
I Logic Programming
I Abstract Argumentation
I Nested least and greatest fixpoint

definitions

Simple and unified way of defining and
studying semantics
I Stable
I Well-founded
I Supported
I Kripke-Kleene

The only thing to define is an evaluation
of branches

Core idea: semantics is defined in terms of explanations why facts hold.
Not just relevant for theory; justifications show up in unexpected places

Bart Bogaerts (VUB) On Nested Justification Systems ICLP ’22 2/24



Justification Theory: Motivation & Definitions

JUSTIFICATION THEORY: A UNIFYING FRAMEWORK

Unification of formalisms
I Logic Programming
I Abstract Argumentation
I Nested least and greatest fixpoint

definitions

Simple and unified way of defining and
studying semantics
I Stable
I Well-founded
I Supported
I Kripke-Kleene

The only thing to define is an evaluation
of branches

Core idea: semantics is defined in terms of explanations why facts hold.
Not just relevant for theory; justifications show up in unexpected places

Bart Bogaerts (VUB) On Nested Justification Systems ICLP ’22 2/24



Justification Theory: Motivation & Definitions

JUSTIFICATION THEORY: A UNIFYING FRAMEWORK

Unification of formalisms
I Logic Programming
I Abstract Argumentation
I Nested least and greatest fixpoint

definitions

Simple and unified way of defining and
studying semantics
I Stable
I Well-founded
I Supported
I Kripke-Kleene

The only thing to define is an evaluation
of branches

Core idea: semantics is defined in terms of explanations why facts hold.
Not just relevant for theory; justifications show up in unexpected places

Bart Bogaerts (VUB) On Nested Justification Systems ICLP ’22 2/24



Justification Theory: Motivation & Definitions

DEFINITIONS: JUSTIFICATION FRAMES

Definition
A justification frame JF is a tuple 〈F,Fd, R〉
with:

fact space F with L = {t, f , u} ⊆ F.

Involution ∼ on F
(with ∼t = f , ∼f = t, ∼u = u)

defined facts Fd ⊆ F \ L; ∼Fd = Fd.

rules R ⊆ Fd × 2F

Example
F = {p,∼p, q,∼q, r,∼r, s,∼s, t, f , u}

Fd = {p,∼p, q,∼q, r,∼r}

Complementation:
p← ∼q ∼p← q, r

q ← ∼p ∼p← q,∼s

p← s,∼r ∼q ← p

r ← r ∼r ← ∼r

Bart Bogaerts (VUB) On Nested Justification Systems ICLP ’22 3/24



Justification Theory: Motivation & Definitions

DEFINITIONS: JUSTIFICATION FRAMES

Definition
A justification frame JF is a tuple 〈F,Fd, R〉
with:

fact space F with L = {t, f , u} ⊆ F.

Involution ∼ on F
(with ∼t = f , ∼f = t, ∼u = u)

defined facts Fd ⊆ F \ L; ∼Fd = Fd.

rules R ⊆ Fd × 2F

Example
F = {p,∼p, q,∼q, r,∼r, s,∼s, t, f , u}

Fd = {p,∼p, q,∼q, r,∼r}

Complementation:
p← ∼q ∼p← q, r

q ← ∼p ∼p← q,∼s

p← s,∼r ∼q ← p

r ← r ∼r ← ∼r

Bart Bogaerts (VUB) On Nested Justification Systems ICLP ’22 3/24



Justification Theory: Motivation & Definitions

DEFINITIONS: JUSTIFICATIONS

Definition
Let JF = 〈F,Fd, R〉 be a justification frame.
A (tree-like) justification J in JF is a labeled
tree such that the set of children of each
node is a case (rule) in R for that node.

J is locally complete if all leaves are open

p← ∼q ∼p← q, r

q ← ∼p ∼p← q,∼s

p← s,∼r ∼q ← p

r ← r ∼r ← ∼r

p

∼q

p

s∼r

∼r

...

Bart Bogaerts (VUB) On Nested Justification Systems ICLP ’22 4/24



Justification Theory: Motivation & Definitions

DEFINITIONS: JUSTIFICATIONS

Definition
Let JF = 〈F,Fd, R〉 be a justification frame.
A (tree-like) justification J in JF is a labeled
tree such that the set of children of each
node is a case (rule) in R for that node.

J is locally complete if all leaves are open

p← ∼q ∼p← q, r

q ← ∼p ∼p← q,∼s

p← s,∼r ∼q ← p

r ← r ∼r ← ∼r

p

∼q

p

s∼r

∼r

...

Bart Bogaerts (VUB) On Nested Justification Systems ICLP ’22 4/24



Justification Theory: Motivation & Definitions

DEFINITIONS: BRANCH EVALUATION

Definition
A branch evaluation B maps every branch
(sequence of facts) to an element of F.

A justification system JS is a tuple
〈F,Fd, R,B〉.

The stable branch evaluation Bst maps
I finite branches to their last element
I infinite branches with positive tail to f
I infinite branches with negative tail to t
I infinite branches with mixed tail to the

element of the first sign switch

s

p

∼q

p

∼r

∼r

...

t

s

p

∼q

p

∼q

...

∼q

Bart Bogaerts (VUB) On Nested Justification Systems ICLP ’22 5/24



Justification Theory: Motivation & Definitions

DEFINITIONS: BRANCH EVALUATION

Definition
A branch evaluation B maps every branch
(sequence of facts) to an element of F.

A justification system JS is a tuple
〈F,Fd, R,B〉.

The stable branch evaluation Bst maps
I finite branches to their last element
I infinite branches with positive tail to f
I infinite branches with negative tail to t
I infinite branches with mixed tail to the

element of the first sign switch

s

p

∼q

p

∼r

∼r

...

t

s

p

∼q

p

∼q

...

∼q

Bart Bogaerts (VUB) On Nested Justification Systems ICLP ’22 5/24



Justification Theory: Motivation & Definitions

DEFINITIONS: BRANCH EVALUATION

Definition
A branch evaluation B maps every branch
(sequence of facts) to an element of F.

A justification system JS is a tuple
〈F,Fd, R,B〉.

The stable branch evaluation Bst maps
I finite branches to their last element
I infinite branches with positive tail to f
I infinite branches with negative tail to t
I infinite branches with mixed tail to the

element of the first sign switch

s

p

∼q

p

∼r

∼r

...

t

s

p

∼q

p

∼q

...

∼q

Bart Bogaerts (VUB) On Nested Justification Systems ICLP ’22 5/24



Justification Theory: Motivation & Definitions

DEFINITIONS: BRANCH EVALUATION

Definition
A branch evaluation B maps every branch
(sequence of facts) to an element of F.

A justification system JS is a tuple
〈F,Fd, R,B〉.

The stable branch evaluation Bst maps
I finite branches to their last element
I infinite branches with positive tail to f
I infinite branches with negative tail to t
I infinite branches with mixed tail to the

element of the first sign switch

s

p

∼q

p

∼r

∼r

...

t

s

p

∼q

p

∼q

...

∼q

Bart Bogaerts (VUB) On Nested Justification Systems ICLP ’22 5/24



Justification Theory: Motivation & Definitions

DEFINITIONS: BRANCH EVALUATION (2)

The well-founded branch evaluation Bwf
maps
I finite branches to their last element
I infinite branches with positive tail to f
I infinite branches with negative tail to t
I infinite branches with mixed tail to u

s

p

∼q

p

∼r

∼r

...

t

s

p

∼q

p

∼q

...

u

Bart Bogaerts (VUB) On Nested Justification Systems ICLP ’22 6/24



Justification Theory: Motivation & Definitions

DEFINITIONS: BRANCH EVALUATION (2)

The well-founded branch evaluation Bwf
maps
I finite branches to their last element
I infinite branches with positive tail to f
I infinite branches with negative tail to t
I infinite branches with mixed tail to u

s

p

∼q

p

∼r

∼r

...

t

s

p

∼q

p

∼q

...

u

Bart Bogaerts (VUB) On Nested Justification Systems ICLP ’22 6/24



Justification Theory: Motivation & Definitions

DEFINITIONS: BRANCH EVALUATION (2)

The well-founded branch evaluation Bwf
maps
I finite branches to their last element
I infinite branches with positive tail to f
I infinite branches with negative tail to t
I infinite branches with mixed tail to u

s

p

∼q

p

∼r

∼r

...

t

s

p

∼q

p

∼q

...

u

Bart Bogaerts (VUB) On Nested Justification Systems ICLP ’22 6/24



Justification Theory: Motivation & Definitions

DEFINITIONS: BRANCH EVALUATION (2)

The well-founded branch evaluation Bwf
maps
I finite branches to their last element
I infinite branches with positive tail to f
I infinite branches with negative tail to t
I infinite branches with mixed tail to u

s

p

∼q

p

∼r

∼r

...

t

s

p

∼q

p

∼q

...

u

Bart Bogaerts (VUB) On Nested Justification Systems ICLP ’22 6/24



Justification Theory: Motivation & Definitions

DEFINITIONS: INTERPRETATIONS

Definition
An interpretation I maps each fact in F to a
truth value (in L) and
I Commutes with negation:

I(∼x) = ∼I(x)
I Identity on L

I(p) = t, I(q) = f , I(r) = t, I(s) = f
And implicitly: I(∼p) = f , I(∼q) = t,
I(r) = f , I(s) = t,
I(t) = t, I(f) = f , I(u) = u

Bart Bogaerts (VUB) On Nested Justification Systems ICLP ’22 7/24



Justification Theory: Motivation & Definitions

DEFINITIONS: INTERPRETATIONS

Definition
An interpretation I maps each fact in F to a
truth value (in L) and
I Commutes with negation:

I(∼x) = ∼I(x)
I Identity on L

I(p) = t, I(q) = f , I(r) = t, I(s) = f
And implicitly: I(∼p) = f , I(∼q) = t,
I(r) = f , I(s) = t,
I(t) = t, I(f) = f , I(u) = u

Bart Bogaerts (VUB) On Nested Justification Systems ICLP ’22 7/24



Justification Theory: Motivation & Definitions

DEFINITIONS: SUPPORTED VALUE

Definition
The value of node x in J under I is the value
of the worst branch starting in x:

valB(J, x, I) = min
b∈BJ (x)

I(B(b))

Definition
The supported value of x under I is the
value of the best justification for x:

SVB(x, I) = max
J∈J(x)

val(J, x, I)

order: f ≤t u ≤t t

Example
I(p) = t, I(q) = f , I(r) = t, I(s) = f using Bst

s

p

∼q

p

∼r

∼r

...

I(t) = t

I(s) = f

fmin(t, f) = f

f

f

ft

t

p

∼q

p

∼q

...

t

t

t

t

SVBst (p, I) ≥t f

SVBst (∼r, I) ≥t t

SVBst (p, I) ≥t t

SVBst (∼q, I) ≥t t

Bart Bogaerts (VUB) On Nested Justification Systems ICLP ’22 8/24



Justification Theory: Motivation & Definitions

DEFINITIONS: SUPPORTED VALUE

Definition
The value of node x in J under I is the value
of the worst branch starting in x:

valB(J, x, I) = min
b∈BJ (x)

I(B(b))

Definition
The supported value of x under I is the
value of the best justification for x:

SVB(x, I) = max
J∈J(x)

val(J, x, I)

order: f ≤t u ≤t t

Example
I(p) = t, I(q) = f , I(r) = t, I(s) = f using Bst

s

p

∼q

p

∼r

∼r

...

I(t) = t

I(s) = f

fmin(t, f) = f

f

f

ft

t

p

∼q

p

∼q

...

t

t

t

t

SVBst (p, I) ≥t f

SVBst (∼r, I) ≥t t

SVBst (p, I) ≥t t

SVBst (∼q, I) ≥t t

Bart Bogaerts (VUB) On Nested Justification Systems ICLP ’22 8/24



Justification Theory: Motivation & Definitions

DEFINITIONS: SUPPORTED VALUE

Definition
The value of node x in J under I is the value
of the worst branch starting in x:

valB(J, x, I) = min
b∈BJ (x)

I(B(b))

Definition
The supported value of x under I is the
value of the best justification for x:

SVB(x, I) = max
J∈J(x)

val(J, x, I)

order: f ≤t u ≤t t

Example
I(p) = t, I(q) = f , I(r) = t, I(s) = f using Bst

s

p

∼q

p

∼r

∼r

...

I(t) = t

I(s) = f

fmin(t, f) = f

f

f

ft

t

p

∼q

p

∼q

...

t

t

t

t

SVBst (p, I) ≥t f

SVBst (∼r, I) ≥t t

SVBst (p, I) ≥t t

SVBst (∼q, I) ≥t t

Bart Bogaerts (VUB) On Nested Justification Systems ICLP ’22 8/24



Justification Theory: Motivation & Definitions

DEFINITIONS: SUPPORTED VALUE

Definition
The value of node x in J under I is the value
of the worst branch starting in x:

valB(J, x, I) = min
b∈BJ (x)

I(B(b))

Definition
The supported value of x under I is the
value of the best justification for x:

SVB(x, I) = max
J∈J(x)

val(J, x, I)

order: f ≤t u ≤t t

Example
I(p) = t, I(q) = f , I(r) = t, I(s) = f using Bst

s

p

∼q

p

∼r

∼r

...

I(t) = t

I(s) = f

fmin(t, f) = f

f

f

ft

t

p

∼q

p

∼q

...

t

t

t

t

SVBst (p, I) ≥t f

SVBst (∼r, I) ≥t t

SVBst (p, I) ≥t t

SVBst (∼q, I) ≥t t

Bart Bogaerts (VUB) On Nested Justification Systems ICLP ’22 8/24



Justification Theory: Motivation & Definitions

DEFINITIONS: SUPPORTED VALUE

Definition
The value of node x in J under I is the value
of the worst branch starting in x:

valB(J, x, I) = min
b∈BJ (x)

I(B(b))

Definition
The supported value of x under I is the
value of the best justification for x:

SVB(x, I) = max
J∈J(x)

val(J, x, I)

order: f ≤t u ≤t t

Example
I(p) = t, I(q) = f , I(r) = t, I(s) = f using Bst

s

p

∼q

p

∼r

∼r

...

I(t) = t

I(s) = f

fmin(t, f) = f

f

f

ft

t

p

∼q

p

∼q

...

t

t

t

t

SVBst (p, I) ≥t f

SVBst (∼r, I) ≥t t

SVBst (p, I) ≥t t

SVBst (∼q, I) ≥t t

Bart Bogaerts (VUB) On Nested Justification Systems ICLP ’22 8/24



Justification Theory: Motivation & Definitions

DEFINITIONS: SUPPORTED VALUE

Definition
The value of node x in J under I is the value
of the worst branch starting in x:

valB(J, x, I) = min
b∈BJ (x)

I(B(b))

Definition
The supported value of x under I is the
value of the best justification for x:

SVB(x, I) = max
J∈J(x)

val(J, x, I)

order: f ≤t u ≤t t

Example
I(p) = t, I(q) = f , I(r) = t, I(s) = f using Bst

s

p

∼q

p

∼r

∼r

...

I(t) = t

I(s) = f

fmin(t, f) = f

f

f

ft

t

p

∼q

p

∼q

...

t

t

t

t

SVBst (p, I) ≥t f

SVBst (∼r, I) ≥t t

SVBst (p, I) ≥t t

SVBst (∼q, I) ≥t t

Bart Bogaerts (VUB) On Nested Justification Systems ICLP ’22 8/24



Justification Theory: Motivation & Definitions

DEFINITIONS: SUPPORTED VALUE

Definition
The value of node x in J under I is the value
of the worst branch starting in x:

valB(J, x, I) = min
b∈BJ (x)

I(B(b))

Definition
The supported value of x under I is the
value of the best justification for x:

SVB(x, I) = max
J∈J(x)

val(J, x, I)

order: f ≤t u ≤t t

Example
I(p) = t, I(q) = f , I(r) = t, I(s) = f using Bst

s

p

∼q

p

∼r

∼r

...

I(t) = t

I(s) = f

fmin(t, f) = f

f

f

ft

t

p

∼q

p

∼q

...

t

t

t

t

SVBst (p, I) ≥t f

SVBst (∼r, I) ≥t t

SVBst (p, I) ≥t t

SVBst (∼q, I) ≥t t

Bart Bogaerts (VUB) On Nested Justification Systems ICLP ’22 8/24



Justification Theory: Motivation & Definitions

DEFINITIONS: SUPPORTED VALUE

Definition
The value of node x in J under I is the value
of the worst branch starting in x:

valB(J, x, I) = min
b∈BJ (x)

I(B(b))

Definition
The supported value of x under I is the
value of the best justification for x:

SVB(x, I) = max
J∈J(x)

val(J, x, I)

order: f ≤t u ≤t t

Example
I(p) = t, I(q) = f , I(r) = t, I(s) = f using Bst

s

p

∼q

p

∼r

∼r

...

I(t) = t

I(s) = f

fmin(t, f) = f

f

f

ft

t

p

∼q

p

∼q

...

t

t

t

t

SVBst (p, I) ≥t f

SVBst (∼r, I) ≥t t

SVBst (p, I) ≥t t

SVBst (∼q, I) ≥t t

Bart Bogaerts (VUB) On Nested Justification Systems ICLP ’22 8/24



Justification Theory: Motivation & Definitions

DEFINITIONS: SUPPORTED VALUE

Definition
The value of node x in J under I is the value
of the worst branch starting in x:

valB(J, x, I) = min
b∈BJ (x)

I(B(b))

Definition
The supported value of x under I is the
value of the best justification for x:

SVB(x, I) = max
J∈J(x)

val(J, x, I)

order: f ≤t u ≤t t

Example
I(p) = t, I(q) = f , I(r) = t, I(s) = f using Bst

s

p

∼q

p

∼r

∼r

...

I(t) = t

I(s) = f

fmin(t, f) = f

f

f

ft

t

p

∼q

p

∼q

...

t

t

t

t

SVBst (p, I) ≥t f

SVBst (∼r, I) ≥t t

SVBst (p, I) ≥t t

SVBst (∼q, I) ≥t t

Bart Bogaerts (VUB) On Nested Justification Systems ICLP ’22 8/24



Justification Theory: Motivation & Definitions

DEFINITIONS: SUPPORTED VALUE

Definition
The value of node x in J under I is the value
of the worst branch starting in x:

valB(J, x, I) = min
b∈BJ (x)

I(B(b))

Definition
The supported value of x under I is the
value of the best justification for x:

SVB(x, I) = max
J∈J(x)

val(J, x, I)

order: f ≤t u ≤t t

Example
I(p) = t, I(q) = f , I(r) = t, I(s) = f using Bst

s

p

∼q

p

∼r

∼r

...

I(t) = t

I(s) = f

fmin(t, f) = f

f

f

ft

t

p

∼q

p

∼q

...

t

t

t

t

SVBst (p, I) ≥t f

SVBst (∼r, I) ≥t t

SVBst (p, I) ≥t t

SVBst (∼q, I) ≥t t

Bart Bogaerts (VUB) On Nested Justification Systems ICLP ’22 8/24



Justification Theory: Motivation & Definitions

DEFINITIONS: SUPPORTED VALUE

Definition
The value of node x in J under I is the value
of the worst branch starting in x:

valB(J, x, I) = min
b∈BJ (x)

I(B(b))

Definition
The supported value of x under I is the
value of the best justification for x:

SVB(x, I) = max
J∈J(x)

val(J, x, I)

order: f ≤t u ≤t t

Example
I(p) = t, I(q) = f , I(r) = t, I(s) = f using Bst

s

p

∼q

p

∼r

∼r

...

I(t) = t

I(s) = f

fmin(t, f) = f

f

f

ft

t

p

∼q

p

∼q

...

t

t

t

t

SVBst (p, I) ≥t f

SVBst (∼r, I) ≥t t

SVBst (p, I) ≥t t

SVBst (∼q, I) ≥t t

Bart Bogaerts (VUB) On Nested Justification Systems ICLP ’22 8/24



Justification Theory: Motivation & Definitions

DEFINITIONS: SUPPORTED VALUE

Definition
The value of node x in J under I is the value
of the worst branch starting in x:

valB(J, x, I) = min
b∈BJ (x)

I(B(b))

Definition
The supported value of x under I is the
value of the best justification for x:

SVB(x, I) = max
J∈J(x)

val(J, x, I)

order: f ≤t u ≤t t

Example
I(p) = t, I(q) = f , I(r) = t, I(s) = f using Bst

s

p

∼q

p

∼r

∼r

...

I(t) = t

I(s) = f

fmin(t, f) = f

f

f

ft

t

p

∼q

p

∼q

...

t

t

t

t

SVBst (p, I) ≥t f

SVBst (∼r, I) ≥t t

SVBst (p, I) ≥t t

SVBst (∼q, I) ≥t t

Bart Bogaerts (VUB) On Nested Justification Systems ICLP ’22 8/24



Justification Theory: Motivation & Definitions

DEFINITIONS: MODEL

Definition
An interpretation I is a B-model if

I(x) = SVB(x, I)

for all defined facts x.

I(p) = t, I(q) = f , I(r) = t, I(s) = f . I is
not a Bst-model of

p← ∼q ∼p← q, r

q ← ∼p ∼p← q,∼s

p← s,∼r ∼q ← p

r ← r ∼r ← ∼r

r only has one justification.

t = I(r) 6= SVBst(r, I) = f

Bart Bogaerts (VUB) On Nested Justification Systems ICLP ’22 9/24



Justification Theory: Motivation & Definitions

DEFINITIONS: MODEL

Definition
An interpretation I is a B-model if

I(x) = SVB(x, I)

for all defined facts x.

I(p) = t, I(q) = f , I(r) = f , I(s) = f .
I is a Bst-model of

p← ∼q ∼p← q, r

q ← ∼p ∼p← q,∼s

p← s,∼r ∼q ← p

r ← r ∼r ← ∼r

∼r

∼r

∼r

...

p

∼q

p

∼q

...

Bart Bogaerts (VUB) On Nested Justification Systems ICLP ’22 9/24



Justification Theory: Motivation & Definitions

DEFINITIONS: MODEL

Definition
An interpretation I is a B-model if

I(x) = SVB(x, I)

for all defined facts x.

I(p) = t, I(q) = f , I(r) = f , I(s) = f .
I is a Bst-model of

p← ∼q ∼p← q, r

q ← ∼p ∼p← q,∼s

p← s,∼r ∼q ← p

r ← r ∼r ← ∼r

∼r

∼r

∼r

...

p

∼q

p

∼q

...

Bart Bogaerts (VUB) On Nested Justification Systems ICLP ’22 9/24



Justification Theory: Motivation & Definitions

DEFINITIONS: SUMMARY

I A justification frame contains a set of rules
I The rules determine which justifications are possible
I A branch evaluation determines which branches are “good”
I A justification is “good” if all its branches are “good”
I An interpretation is a model (according to some semantics, induced by the branch

evaluation) if the truth value of each fact equals the value of its best justification

Bart Bogaerts (VUB) On Nested Justification Systems ICLP ’22 10/24



Two Flavours of Justifications

OUTLINE

1. Justification Theory: Motivation & Definitions

2. Two Flavours of Justifications

3. Nested Justification Systems
1. Motivation
2. Definition

4. Two Characterizations of Semantics
1. Compression
2. Merge
3. Equivalence

5. Conclusion

Bart Bogaerts (VUB) On Nested Justification Systems ICLP ’22



Two Flavours of Justifications

TWO DEFINITIONS OF JUSTIFICATIONS

Definition ([Den93, MBDH22])
Let JF = 〈F,Fd, R〉 be a justification
frame. A (tree-like) justification J in JF is
a labeled tree such that the set of children
of each internal node is a case (rule) in R
for that node.

Definition
([Mar09, DBS15, MPBD18, MBD21])
Let JF = 〈F,Fd, R〉 be a justification
frame. A (graph-like) justification J in JF
is a graph with nodes in F such that the
set of children of each internal node is a
case (rule) in R for that node.

Theorem
Every graph-like justification Jg can be “unfolded” into a tree-like justification Jt such that
valB(Jt, x, I) ≥t valB(Jg, x, I) for each x

Bart Bogaerts (VUB) On Nested Justification Systems ICLP ’22 11/24



Two Flavours of Justifications

TWO DEFINITIONS OF JUSTIFICATIONS

Definition ([Den93, MBDH22])
Let JF = 〈F,Fd, R〉 be a justification
frame. A (tree-like) justification J in JF is
a labeled tree such that the set of children
of each internal node is a case (rule) in R
for that node.

Definition
([Mar09, DBS15, MPBD18, MBD21])
Let JF = 〈F,Fd, R〉 be a justification
frame. A (graph-like) justification J in JF
is a graph with nodes in F such that the
set of children of each internal node is a
case (rule) in R for that node.

Theorem
Every graph-like justification Jg can be “unfolded” into a tree-like justification Jt such that
valB(Jt, x, I) ≥t valB(Jg, x, I) for each x

Bart Bogaerts (VUB) On Nested Justification Systems ICLP ’22 11/24



Two Flavours of Justifications

THE GRAPH-REDUCIBILITY PROBLEM

Open Problem (The Graph-Reducibility Problem)
Under which conditions on B can every tree-like justification Jt be “reduced” to a graph-like
justification Jg with valB(Jg, x, I) ≥t valB(Jt, x, I)?

First studied by Marynissen et al [MBD20].

Example
The branch evaluation Bex maps:

I finite branches to their last element
I infinite branches with a consistent positive tail to f
I infinite branches with a consistent negative tail to t
I other branches to u

consistent branch:
whenever xi = xj also
xi+1 = xj+1

Bart Bogaerts (VUB) On Nested Justification Systems ICLP ’22 12/24



Two Flavours of Justifications

THE GRAPH-REDUCIBILITY PROBLEM

Open Problem (The Graph-Reducibility Problem)
Under which conditions on B can every tree-like justification Jt be “reduced” to a graph-like
justification Jg with valB(Jg, x, I) ≥t valB(Jt, x, I)?

First studied by Marynissen et al [MBD20].

Example
The branch evaluation Bex maps:

I finite branches to their last element
I infinite branches with a consistent positive tail to f
I infinite branches with a consistent negative tail to t
I other branches to u

consistent branch:
whenever xi = xj also
xi+1 = xj+1

Bart Bogaerts (VUB) On Nested Justification Systems ICLP ’22 12/24



Two Flavours of Justifications

THE GRAPH-REDUCIBILITY PROBLEM: EXAMPLE

a← b

a← c ∼a← ∼b,∼c

b← a ∼b← ∼a

c← a ∼c← ∼a

Bex maps:
I finite branch: last element
I consistent positive tail: f
I consistent negative tail: t
I other: u

Tree-like:

SVt(a, I) = u
and
SVt(∼a, I) = u

a

b

a

c

a

b

a

c

...

Graph-like:

a b

a c

∼a∼b ∼c

SVg(a, I) = f
and
SVg(∼a, I) = u

Bart Bogaerts (VUB) On Nested Justification Systems ICLP ’22 13/24



Two Flavours of Justifications

THE GRAPH-REDUCIBILITY PROBLEM: EXAMPLE

a← b

a← c ∼a← ∼b,∼c

b← a ∼b← ∼a

c← a ∼c← ∼a

Bex maps:
I finite branch: last element
I consistent positive tail: f
I consistent negative tail: t
I other: u

Tree-like:

SVt(a, I) = u
and
SVt(∼a, I) = u

a

b

a

c

a

b

a

c

...

Graph-like:

a b

a c

∼a∼b ∼c

SVg(a, I) = f
and
SVg(∼a, I) = u

Bart Bogaerts (VUB) On Nested Justification Systems ICLP ’22 13/24



Two Flavours of Justifications

THE GRAPH-REDUCIBILITY PROBLEM: EXAMPLE

a← b

a← c ∼a← ∼b,∼c

b← a ∼b← ∼a

c← a ∼c← ∼a

Bex maps:
I finite branch: last element
I consistent positive tail: f
I consistent negative tail: t
I other: u

Tree-like:

SVt(a, I) = u
and
SVt(∼a, I) = u

a

b

a

c

a

b

a

c

...

Graph-like:

a b

a c

∼a∼b ∼c

SVg(a, I) = f
and
SVg(∼a, I) = u

Bart Bogaerts (VUB) On Nested Justification Systems ICLP ’22 13/24



Two Flavours of Justifications

THE GRAPH-REDUCIBILITY PROBLEM: EXAMPLE

a← b

a← c ∼a← ∼b,∼c

b← a ∼b← ∼a

c← a ∼c← ∼a

Bex maps:
I finite branch: last element
I consistent positive tail: f
I consistent negative tail: t
I other: u

Tree-like:

SVt(a, I) = u
and
SVt(∼a, I) = u

a

b

a

c

a

b

a

c

...

Graph-like:

a b

a c

∼a∼b ∼c

SVg(a, I) = f
and
SVg(∼a, I) = u

Bart Bogaerts (VUB) On Nested Justification Systems ICLP ’22 13/24



Two Flavours of Justifications

THE GRAPH-REDUCIBILITY PROBLEM: EXAMPLE

a← b

a← c ∼a← ∼b,∼c

b← a ∼b← ∼a

c← a ∼c← ∼a

Bex maps:
I finite branch: last element
I consistent positive tail: f
I consistent negative tail: t
I other: u

Tree-like:

SVt(a, I) = u
and
SVt(∼a, I) = u

a

b

a

c

a

b

a

c

...

Graph-like:

a b

a c

∼a∼b ∼c

SVg(a, I) = f
and
SVg(∼a, I) = u

Bart Bogaerts (VUB) On Nested Justification Systems ICLP ’22 13/24



Two Flavours of Justifications

THE GRAPH-REDUCIBILITY PROBLEM: EXAMPLE

a← b

a← c ∼a← ∼b,∼c

b← a ∼b← ∼a

c← a ∼c← ∼a

Bex maps:
I finite branch: last element
I consistent positive tail: f
I consistent negative tail: t
I other: u

Tree-like:

SVt(a, I) = u
and
SVt(∼a, I) = u

a

b

a

c

a

b

a

c

...

Graph-like:

a b

a c

∼a∼b ∼c

SVg(a, I) = f
and
SVg(∼a, I) = u

Bart Bogaerts (VUB) On Nested Justification Systems ICLP ’22 13/24



Two Flavours of Justifications

THE GRAPH-REDUCIBILITY PROBLEM: EXAMPLE

a← b

a← c ∼a← ∼b,∼c

b← a ∼b← ∼a

c← a ∼c← ∼a

Bex maps:
I finite branch: last element
I consistent positive tail: f
I consistent negative tail: t
I other: u

Tree-like:

SVt(a, I) = u
and
SVt(∼a, I) = u

a

b

a

c

a

b

a

c

...

Graph-like:

a b

a c

∼a∼b ∼c

SVg(a, I) = f
and
SVg(∼a, I) = u

Bart Bogaerts (VUB) On Nested Justification Systems ICLP ’22 13/24



Two Flavours of Justifications

THE GRAPH-REDUCIBILITY PROBLEM: EXAMPLE

a← b

a← c ∼a← ∼b,∼c

b← a ∼b← ∼a

c← a ∼c← ∼a

Bex maps:
I finite branch: last element
I consistent positive tail: f
I consistent negative tail: t
I other: u

Tree-like:

SVt(a, I) = u
and
SVt(∼a, I) = u

a

b

a

c

a

b

a

c

...

Graph-like:

a b

a c

∼a∼b ∼c

SVg(a, I) = f
and
SVg(∼a, I) = u

Bart Bogaerts (VUB) On Nested Justification Systems ICLP ’22 13/24



Two Flavours of Justifications

THE GRAPH-REDUCIBILITY PROBLEM: EXAMPLE

a← b

a← c ∼a← ∼b,∼c

b← a ∼b← ∼a

c← a ∼c← ∼a

Bex maps:
I finite branch: last element
I consistent positive tail: f
I consistent negative tail: t
I other: u

Tree-like:

SVt(a, I) = u
and
SVt(∼a, I) = u

a

b

a

c

a

b

a

c

...

Graph-like:

a b

a c

∼a∼b ∼c

SVg(a, I) = f
and
SVg(∼a, I) = u

Bart Bogaerts (VUB) On Nested Justification Systems ICLP ’22 13/24



Two Flavours of Justifications

TREE-LIKE AND GRAPH-LIKE JUSTIFICATIONS

I Our results are only about tree-like justifications
I In examples, I might sometimes draw graph-like justifications, but mean their

tree-unfolding

Bart Bogaerts (VUB) On Nested Justification Systems ICLP ’22 14/24



Two Flavours of Justifications

TREE-LIKE AND GRAPH-LIKE JUSTIFICATIONS

I Our results are only about tree-like justifications
I In examples, I might sometimes draw graph-like justifications, but mean their

tree-unfolding

Bart Bogaerts (VUB) On Nested Justification Systems ICLP ’22 14/24



Nested Justification Systems

OUTLINE

1. Justification Theory: Motivation & Definitions

2. Two Flavours of Justifications

3. Nested Justification Systems
1. Motivation
2. Definition

4. Two Characterizations of Semantics
1. Compression
2. Merge
3. Equivalence

5. Conclusion

Bart Bogaerts (VUB) On Nested Justification Systems ICLP ’22



Nested Justification Systems Motivation

NESTED LEAST AND GREATEST FIXPOINT DEFINITIONS

Nested induction and co-induction
Example
Define Q as the set of nodes in a (finite or
infinite) graph with an outgoing path with
infinitely many P ’s.


∀x : Q(x)← R(x)⌊
∀x, y : R(x)← P (x) ∧G(x, y) ∧Q(y)
∀x : R(x)← G(x, y) ∧R(x)

⌋

Fixpoint Computation:
Q0 = all nodes
R0,0 = ∅
R0,1 = all P s with an outgoing edge
. . .
R0,∞ = can reach a P with an outgoing edge
Q1 = can reach a P with an outgoing edge
R1,0 = ∅
R1,1 = all P s with outgoing edge to a Q1
. . .
R1,∞ = outgoing path with two P s
Q2 = outgoing path with two P s
. . .
Q∞ = outgoing path with infinitely many P s

Bart Bogaerts (VUB) On Nested Justification Systems ICLP ’22 15/24



Nested Justification Systems Motivation

NESTED LEAST AND GREATEST FIXPOINT DEFINITIONS

Nested induction and co-induction
Example
Define Q as the set of nodes in a (finite or
infinite) graph with an outgoing path with
infinitely many P ’s.


∀x : Q(x)← R(x)⌊
∀x, y : R(x)← P (x) ∧G(x, y) ∧Q(y)
∀x : R(x)← G(x, y) ∧R(x)

⌋

Fixpoint Computation:
Q0 = all nodes
R0,0 = ∅
R0,1 = all P s with an outgoing edge
. . .
R0,∞ = can reach a P with an outgoing edge
Q1 = can reach a P with an outgoing edge
R1,0 = ∅
R1,1 = all P s with outgoing edge to a Q1
. . .
R1,∞ = outgoing path with two P s
Q2 = outgoing path with two P s
. . .
Q∞ = outgoing path with infinitely many P s

Bart Bogaerts (VUB) On Nested Justification Systems ICLP ’22 15/24



Nested Justification Systems Motivation

NESTED LEAST AND GREATEST FIXPOINT DEFINITIONS

Nested induction and co-induction
Example
Define Q as the set of nodes in a (finite or
infinite) graph with an outgoing path with
infinitely many P ’s.


∀x : Q(x)← R(x)⌊
∀x, y : R(x)← P (x) ∧G(x, y) ∧Q(y)
∀x : R(x)← G(x, y) ∧R(x)

⌋

Fixpoint Computation:
Q0 = all nodes
R0,0 = ∅
R0,1 = all P s with an outgoing edge
. . .
R0,∞ = can reach a P with an outgoing edge
Q1 = can reach a P with an outgoing edge
R1,0 = ∅
R1,1 = all P s with outgoing edge to a Q1
. . .
R1,∞ = outgoing path with two P s
Q2 = outgoing path with two P s
. . .
Q∞ = outgoing path with infinitely many P s

Bart Bogaerts (VUB) On Nested Justification Systems ICLP ’22 15/24



Nested Justification Systems Motivation

NESTED LEAST AND GREATEST FIXPOINT DEFINITIONS

Nested induction and co-induction
Example
Define Q as the set of nodes in a (finite or
infinite) graph with an outgoing path with
infinitely many P ’s.


∀x : Q(x)← R(x)⌊
∀x, y : R(x)← P (x) ∧G(x, y) ∧Q(y)
∀x : R(x)← G(x, y) ∧R(x)

⌋

Fixpoint Computation:
Q0 = all nodes
R0,0 = ∅
R0,1 = all P s with an outgoing edge
. . .
R0,∞ = can reach a P with an outgoing edge
Q1 = can reach a P with an outgoing edge
R1,0 = ∅
R1,1 = all P s with outgoing edge to a Q1
. . .
R1,∞ = outgoing path with two P s
Q2 = outgoing path with two P s
. . .
Q∞ = outgoing path with infinitely many P s

Bart Bogaerts (VUB) On Nested Justification Systems ICLP ’22 15/24



Nested Justification Systems Motivation

NESTED LEAST AND GREATEST FIXPOINT DEFINITIONS

Nested induction and co-induction
Example
Define Q as the set of nodes in a (finite or
infinite) graph with an outgoing path with
infinitely many P ’s.


∀x : Q(x)← R(x)⌊
∀x, y : R(x)← P (x) ∧G(x, y) ∧Q(y)
∀x : R(x)← G(x, y) ∧R(x)

⌋

Fixpoint Computation:
Q0 = all nodes
R0,0 = ∅
R0,1 = all P s with an outgoing edge
. . .
R0,∞ = can reach a P with an outgoing edge
Q1 = can reach a P with an outgoing edge
R1,0 = ∅
R1,1 = all P s with outgoing edge to a Q1
. . .
R1,∞ = outgoing path with two P s
Q2 = outgoing path with two P s
. . .
Q∞ = outgoing path with infinitely many P s

Bart Bogaerts (VUB) On Nested Justification Systems ICLP ’22 15/24



Nested Justification Systems Motivation

NESTED LEAST AND GREATEST FIXPOINT DEFINITIONS

Nested induction and co-induction
Example
Define Q as the set of nodes in a (finite or
infinite) graph with an outgoing path with
infinitely many P ’s.


∀x : Q(x)← R(x)⌊
∀x, y : R(x)← P (x) ∧G(x, y) ∧Q(y)
∀x : R(x)← G(x, y) ∧R(x)

⌋

Fixpoint Computation:
Q0 = all nodes
R0,0 = ∅
R0,1 = all P s with an outgoing edge
. . .
R0,∞ = can reach a P with an outgoing edge
Q1 = can reach a P with an outgoing edge
R1,0 = ∅
R1,1 = all P s with outgoing edge to a Q1
. . .
R1,∞ = outgoing path with two P s
Q2 = outgoing path with two P s
. . .
Q∞ = outgoing path with infinitely many P s

Bart Bogaerts (VUB) On Nested Justification Systems ICLP ’22 15/24



Nested Justification Systems Motivation

NESTED LEAST AND GREATEST FIXPOINT DEFINITIONS

Nested induction and co-induction
Example
Define Q as the set of nodes in a (finite or
infinite) graph with an outgoing path with
infinitely many P ’s.


∀x : Q(x)← R(x)⌊
∀x, y : R(x)← P (x) ∧G(x, y) ∧Q(y)
∀x : R(x)← G(x, y) ∧R(x)

⌋

Fixpoint Computation:
Q0 = all nodes
R0,0 = ∅
R0,1 = all P s with an outgoing edge
. . .
R0,∞ = can reach a P with an outgoing edge
Q1 = can reach a P with an outgoing edge
R1,0 = ∅
R1,1 = all P s with outgoing edge to a Q1
. . .
R1,∞ = outgoing path with two P s
Q2 = outgoing path with two P s
. . .
Q∞ = outgoing path with infinitely many P s

Bart Bogaerts (VUB) On Nested Justification Systems ICLP ’22 15/24



Nested Justification Systems Motivation

NESTED LEAST AND GREATEST FIXPOINT DEFINITIONS

Nested induction and co-induction
Example
Define Q as the set of nodes in a (finite or
infinite) graph with an outgoing path with
infinitely many P ’s.


∀x : Q(x)← R(x)⌊
∀x, y : R(x)← P (x) ∧G(x, y) ∧Q(y)
∀x : R(x)← G(x, y) ∧R(x)

⌋

Fixpoint Computation:
Q0 = all nodes
R0,0 = ∅
R0,1 = all P s with an outgoing edge
. . .
R0,∞ = can reach a P with an outgoing edge
Q1 = can reach a P with an outgoing edge
R1,0 = ∅
R1,1 = all P s with outgoing edge to a Q1
. . .
R1,∞ = outgoing path with two P s
Q2 = outgoing path with two P s
. . .
Q∞ = outgoing path with infinitely many P s

Bart Bogaerts (VUB) On Nested Justification Systems ICLP ’22 15/24



Nested Justification Systems Motivation

NESTED LEAST AND GREATEST FIXPOINT DEFINITIONS

Nested induction and co-induction
Example
Define Q as the set of nodes in a (finite or
infinite) graph with an outgoing path with
infinitely many P ’s.


∀x : Q(x)← R(x)⌊
∀x, y : R(x)← P (x) ∧G(x, y) ∧Q(y)
∀x : R(x)← G(x, y) ∧R(x)

⌋

Fixpoint Computation:
Q0 = all nodes
R0,0 = ∅
R0,1 = all P s with an outgoing edge
. . .
R0,∞ = can reach a P with an outgoing edge
Q1 = can reach a P with an outgoing edge
R1,0 = ∅
R1,1 = all P s with outgoing edge to a Q1
. . .
R1,∞ = outgoing path with two P s
Q2 = outgoing path with two P s
. . .
Q∞ = outgoing path with infinitely many P s

Bart Bogaerts (VUB) On Nested Justification Systems ICLP ’22 15/24



Nested Justification Systems Motivation

NESTED LEAST AND GREATEST FIXPOINT DEFINITIONS

Nested induction and co-induction
Example
Define Q as the set of nodes in a (finite or
infinite) graph with an outgoing path with
infinitely many P ’s.


∀x : Q(x)← R(x)⌊
∀x, y : R(x)← P (x) ∧G(x, y) ∧Q(y)
∀x : R(x)← G(x, y) ∧R(x)

⌋

Fixpoint Computation:
Q0 = all nodes
R0,0 = ∅
R0,1 = all P s with an outgoing edge
. . .
R0,∞ = can reach a P with an outgoing edge
Q1 = can reach a P with an outgoing edge
R1,0 = ∅
R1,1 = all P s with outgoing edge to a Q1
. . .
R1,∞ = outgoing path with two P s
Q2 = outgoing path with two P s
. . .
Q∞ = outgoing path with infinitely many P s

Bart Bogaerts (VUB) On Nested Justification Systems ICLP ’22 15/24



Nested Justification Systems Motivation

NESTED LEAST AND GREATEST FIXPOINT DEFINITIONS

Nested induction and co-induction
Example
Define Q as the set of nodes in a (finite or
infinite) graph with an outgoing path with
infinitely many P ’s.


∀x : Q(x)← R(x)⌊
∀x, y : R(x)← P (x) ∧G(x, y) ∧Q(y)
∀x : R(x)← G(x, y) ∧R(x)

⌋

Fixpoint Computation:
Q0 = all nodes
R0,0 = ∅
R0,1 = all P s with an outgoing edge
. . .
R0,∞ = can reach a P with an outgoing edge
Q1 = can reach a P with an outgoing edge
R1,0 = ∅
R1,1 = all P s with outgoing edge to a Q1
. . .
R1,∞ = outgoing path with two P s
Q2 = outgoing path with two P s
. . .
Q∞ = outgoing path with infinitely many P s

Bart Bogaerts (VUB) On Nested Justification Systems ICLP ’22 15/24



Nested Justification Systems Motivation

NESTED LEAST AND GREATEST FIXPOINT DEFINITIONS

Nested induction and co-induction
Example
Define Q as the set of nodes in a (finite or
infinite) graph with an outgoing path with
infinitely many P ’s.


∀x : Q(x)← R(x)⌊
∀x, y : R(x)← P (x) ∧G(x, y) ∧Q(y)
∀x : R(x)← G(x, y) ∧R(x)

⌋

Fixpoint Computation:
Q0 = all nodes
R0,0 = ∅
R0,1 = all P s with an outgoing edge
. . .
R0,∞ = can reach a P with an outgoing edge
Q1 = can reach a P with an outgoing edge
R1,0 = ∅
R1,1 = all P s with outgoing edge to a Q1
. . .
R1,∞ = outgoing path with two P s
Q2 = outgoing path with two P s
. . .
Q∞ = outgoing path with infinitely many P s

Bart Bogaerts (VUB) On Nested Justification Systems ICLP ’22 15/24



Nested Justification Systems Motivation

NESTED LEAST AND GREATEST FIXPOINT DEFINITIONS

Nested induction and co-induction
Example
Define Q as the set of nodes in a (finite or
infinite) graph with an outgoing path with
infinitely many P ’s.


∀x : Q(x)← R(x)⌊
∀x, y : R(x)← P (x) ∧G(x, y) ∧Q(y)
∀x : R(x)← G(x, y) ∧R(x)

⌋

Fixpoint Computation:
Q0 = all nodes
R0,0 = ∅
R0,1 = all P s with an outgoing edge
. . .
R0,∞ = can reach a P with an outgoing edge
Q1 = can reach a P with an outgoing edge
R1,0 = ∅
R1,1 = all P s with outgoing edge to a Q1
. . .
R1,∞ = outgoing path with two P s
Q2 = outgoing path with two P s
. . .
Q∞ = outgoing path with infinitely many P s

Bart Bogaerts (VUB) On Nested Justification Systems ICLP ’22 15/24



Nested Justification Systems Motivation

NESTED LEAST AND GREATEST FIXPOINT DEFINITIONS

Nested induction and co-induction
Example
Define Q as the set of nodes in a (finite or
infinite) graph with an outgoing path with
infinitely many P ’s.


∀x : Q(x)← R(x)⌊
∀x, y : R(x)← P (x) ∧G(x, y) ∧Q(y)
∀x : R(x)← G(x, y) ∧R(x)

⌋

Fixpoint Computation:
Q0 = all nodes
R0,0 = ∅
R0,1 = all P s with an outgoing edge
. . .
R0,∞ = can reach a P with an outgoing edge
Q1 = can reach a P with an outgoing edge
R1,0 = ∅
R1,1 = all P s with outgoing edge to a Q1
. . .
R1,∞ = outgoing path with two P s
Q2 = outgoing path with two P s
. . .
Q∞ = outgoing path with infinitely many P s

Bart Bogaerts (VUB) On Nested Justification Systems ICLP ’22 15/24



Nested Justification Systems Motivation

NESTED LEAST AND GREATEST FIXPOINT DEFINITIONS

Nested induction and co-induction
Example
Define Q as the set of nodes in a (finite or
infinite) graph with an outgoing path with
infinitely many P ’s.

Bcwf :

∀x : Q(x)← R(x)

Bwf :
{
∀x, y : R(x)← P (x) ∧G(x, y) ∧Q(y)
∀x : R(x)← G(x, y) ∧R(x)

}

Bart Bogaerts (VUB) On Nested Justification Systems ICLP ’22 15/24



Nested Justification Systems Motivation

AGGREGATES

Logic Programs with Aggregates
p.
q.
s← p ∧#{p, q, s} ≥ 2.


I Various semantics exist; old problem
I Modular definition of the semantics
I Formal framework for comparison

JSFLP = Bst :



p← t
q ← t
s← p, a

BKK :

a← p, q
a← s, q
a← p, s





JSGZ = Bst :



p← t
q ← t
s← p, a

BKK :


a← p, q,∼s
a← s, q,∼p
a← p, s,∼q
a← p, q, s




Bart Bogaerts (VUB) On Nested Justification Systems ICLP ’22 16/24



Nested Justification Systems Motivation

AGGREGATES

Logic Programs with Aggregates
p.
q.
s← p ∧#{p, q, s} ≥ 2.


I Various semantics exist; old problem
I Modular definition of the semantics
I Formal framework for comparison

JSFLP = Bst :



p← t
q ← t
s← p, a

BKK :

a← p, q
a← s, q
a← p, s





JSGZ = Bst :



p← t
q ← t
s← p, a

BKK :


a← p, q,∼s
a← s, q,∼p
a← p, s,∼q
a← p, q, s




Bart Bogaerts (VUB) On Nested Justification Systems ICLP ’22 16/24



Nested Justification Systems Motivation

AGGREGATES

Logic Programs with Aggregates
p.
q.
s← p ∧#{p, q, s} ≥ 2.


I Various semantics exist; old problem
I Modular definition of the semantics
I Formal framework for comparison

JSFLP = Bst :



p← t
q ← t
s← p, a

BKK :

a← p, q
a← s, q
a← p, s





JSGZ = Bst :



p← t
q ← t
s← p, a

BKK :


a← p, q,∼s
a← s, q,∼p
a← p, s,∼q
a← p, q, s




Bart Bogaerts (VUB) On Nested Justification Systems ICLP ’22 16/24



Nested Justification Systems Motivation

AGGREGATES

Logic Programs with Aggregates
p.
q.
s← p ∧#{p, q, s} ≥ 2.


I Various semantics exist; old problem
I Modular definition of the semantics
I Formal framework for comparison

JSFLP = Bst :



p← t
q ← t
s← p, a

BKK :

a← p, q
a← s, q
a← p, s





JSGZ = Bst :



p← t
q ← t
s← p, a

BKK :


a← p, q,∼s
a← s, q,∼p
a← p, s,∼q
a← p, q, s




Bart Bogaerts (VUB) On Nested Justification Systems ICLP ’22 16/24



Nested Justification Systems Motivation

AGGREGATES

Logic Programs with Aggregates
p.
q.
s← p ∧#{p, q, s} ≥ 2.


I Various semantics exist; old problem
I Modular definition of the semantics
I Formal framework for comparison

JSFLP = Bst :



p← t
q ← t
s← p, a

BKK :

a← p, q
a← s, q
a← p, s





JSGZ = Bst :



p← t
q ← t
s← p, a

BKK :


a← p, q,∼s
a← s, q,∼p
a← p, s,∼q
a← p, q, s




Bart Bogaerts (VUB) On Nested Justification Systems ICLP ’22 16/24



Nested Justification Systems Motivation

AGGREGATES

Logic Programs with Aggregates
p.
q.
s← p ∧#{p, q, s} ≥ 2.


I Various semantics exist; old problem
I Modular definition of the semantics
I Formal framework for comparison

JSFLP = Bst :



p← t
q ← t
s← p, a

BKK :

a← p, q
a← s, q
a← p, s





JSGZ = Bst :



p← t
q ← t
s← p, a

BKK :


a← p, q,∼s
a← s, q,∼p
a← p, s,∼q
a← p, q, s




Bart Bogaerts (VUB) On Nested Justification Systems ICLP ’22 16/24



Nested Justification Systems Definition

NESTED SYSTEMS

JSFLP = Bst :



p← t
q ← t
s← p, a

BKK :

a← p, q
a← s, q
a← p, s




I Fdl = {p, q, s,∼p,∼q,∼s}
I F1

d = {a,∼a}
I Fd = Fdl ∪ F1

d

Definition ([DBS15])
Let F be a fact space. A nested justification
system on F is a tuple〈

F,Fd,Fdl, R,B,
{
JS1, . . . , JSk

}〉
such that:

1. 〈F,Fdl, R,B〉 is a justification system;
2. each JSi is a nested justification system
〈Fi,Fi

d,Fi
dl, Ri,Bi, . . .〉;

3. Fd is partitioned into
{
Fdl,F1

d, . . . ,Fk
d

}
;

4. F = ∪k
i=1Fk;

5. Fi
o ⊆ Fo ∪ Fdl

Bart Bogaerts (VUB) On Nested Justification Systems ICLP ’22 17/24



Nested Justification Systems Definition

NESTED SYSTEMS

JSFLP = Bst :



p← t
q ← t
s← p, a

BKK :

a← p, q
a← s, q
a← p, s




I Fdl = {p, q, s,∼p,∼q,∼s}
I F1

d = {a,∼a}
I Fd = Fdl ∪ F1

d

Definition ([DBS15])
Let F be a fact space. A nested justification
system on F is a tuple〈

F,Fd,Fdl, R,B,
{
JS1, . . . , JSk

}〉
such that:

1. 〈F,Fdl, R,B〉 is a justification system;
2. each JSi is a nested justification system
〈Fi,Fi

d,Fi
dl, Ri,Bi, . . .〉;

3. Fd is partitioned into
{
Fdl,F1

d, . . . ,Fk
d

}
;

4. F = ∪k
i=1Fk;

5. Fi
o ⊆ Fo ∪ Fdl

Bart Bogaerts (VUB) On Nested Justification Systems ICLP ’22 17/24



Nested Justification Systems Definition

NESTED SYSTEMS

JSFLP = Bst :



p← t
q ← t
s← p, a

BKK :

a← p, q
a← s, q
a← p, s




I Fdl = {p, q, s,∼p,∼q,∼s}
I F1

d = {a,∼a}
I Fd = Fdl ∪ F1

d

Definition ([DBS15])
Let F be a fact space. A nested justification
system on F is a tuple〈

F,Fd,Fdl, R,B,
{
JS1, . . . , JSk

}〉
such that:

1. 〈F,Fdl, R,B〉 is a justification system;
2. each JSi is a nested justification system
〈Fi,Fi

d,Fi
dl, Ri,Bi, . . .〉;

3. Fd is partitioned into
{
Fdl,F1

d, . . . ,Fk
d

}
;

4. F = ∪k
i=1Fk;

5. Fi
o ⊆ Fo ∪ Fdl

Bart Bogaerts (VUB) On Nested Justification Systems ICLP ’22 17/24



Nested Justification Systems Definition

NESTED SYSTEMS

JSFLP = Bst :



p← t
q ← t
s← p, a

BKK :

a← p, q
a← s, q
a← p, s




I Fdl = {p, q, s,∼p,∼q,∼s}
I F1

d = {a,∼a}
I Fd = Fdl ∪ F1

d

Definition ([DBS15])
Let F be a fact space. A nested justification
system on F is a tuple〈

F,Fd,Fdl, R,B,
{
JS1, . . . , JSk

}〉
such that:

1. 〈F,Fdl, R,B〉 is a justification system;
2. each JSi is a nested justification system
〈Fi,Fi

d,Fi
dl, Ri,Bi, . . .〉;

3. Fd is partitioned into
{
Fdl,F1

d, . . . ,Fk
d

}
;

4. F = ∪k
i=1Fk;

5. Fi
o ⊆ Fo ∪ Fdl

Bart Bogaerts (VUB) On Nested Justification Systems ICLP ’22 17/24



Nested Justification Systems Definition

NESTED SYSTEMS

JSFLP = Bst :



p← t
q ← t
s← p, a

BKK :

a← p, q
a← s, q
a← p, s




I Fdl = {p, q, s,∼p,∼q,∼s}
I F1

d = {a,∼a}
I Fd = Fdl ∪ F1

d

Definition ([DBS15])
Let F be a fact space. A nested justification
system on F is a tuple〈

F,Fd,Fdl, R,B,
{
JS1, . . . , JSk

}〉
such that:

1. 〈F,Fdl, R,B〉 is a justification system;
2. each JSi is a nested justification system
〈Fi,Fi

d,Fi
dl, Ri,Bi, . . .〉;

3. Fd is partitioned into
{
Fdl,F1

d, . . . ,Fk
d

}
;

4. F = ∪k
i=1Fk;

5. Fi
o ⊆ Fo ∪ Fdl

Bart Bogaerts (VUB) On Nested Justification Systems ICLP ’22 17/24



Nested Justification Systems Definition

NESTED SYSTEMS

JSFLP = Bst :



p← t
q ← t
s← p, a

BKK :

a← p, q
a← s, q
a← p, s




I Fdl = {p, q, s,∼p,∼q,∼s}
I F1

d = {a,∼a}
I Fd = Fdl ∪ F1

d

Definition ([DBS15])
Let F be a fact space. A nested justification
system on F is a tuple〈

F,Fd,Fdl, R,B,
{
JS1, . . . , JSk

}〉
such that:

1. 〈F,Fdl, R,B〉 is a justification system;
2. each JSi is a nested justification system
〈Fi,Fi

d,Fi
dl, Ri,Bi, . . .〉;

3. Fd is partitioned into
{
Fdl,F1

d, . . . ,Fk
d

}
;

4. F = ∪k
i=1Fk;

5. Fi
o ⊆ Fo ∪ Fdl

Bart Bogaerts (VUB) On Nested Justification Systems ICLP ’22 17/24



Two Characterizations of Semantics

OUTLINE

1. Justification Theory: Motivation & Definitions

2. Two Flavours of Justifications

3. Nested Justification Systems
1. Motivation
2. Definition

4. Two Characterizations of Semantics
1. Compression
2. Merge
3. Equivalence

5. Conclusion

Bart Bogaerts (VUB) On Nested Justification Systems ICLP ’22



Two Characterizations of Semantics Compression

COMPRESSION SEMANTICS

The original semantics of [DBS15]
I For each fact a defined in the inner system
I and each justification J of a

I and each rule (in outer system) with a in its body
I make new rule with a replaced by B(J)

Disadvantages:
I “Explanations” not in terms of input rules
I Only defined for parametric inner systems

Bart Bogaerts (VUB) On Nested Justification Systems ICLP ’22 18/24



Two Characterizations of Semantics Compression

COMPRESSION SEMANTICS

The original semantics of [DBS15]
I For each fact a defined in the inner system
I and each justification J of a

I and each rule (in outer system) with a in its body
I make new rule with a replaced by B(J)

Disadvantages:
I “Explanations” not in terms of input rules
I Only defined for parametric inner systems

Bart Bogaerts (VUB) On Nested Justification Systems ICLP ’22 18/24



Two Characterizations of Semantics Compression

COMPRESSION SEMANTICS

The original semantics of [DBS15]
I For each fact a defined in the inner system
I and each justification J of a

I and each rule (in outer system) with a in its body
I make new rule with a replaced by B(J)

Disadvantages:
I “Explanations” not in terms of input rules
I Only defined for parametric inner systems

Bart Bogaerts (VUB) On Nested Justification Systems ICLP ’22 18/24



Two Characterizations of Semantics Compression

COMPRESSION SEMANTICS

The original semantics of [DBS15]
I For each fact a defined in the inner system
I and each justification J of a

I and each rule (in outer system) with a in its body
I make new rule with a replaced by B(J)

Disadvantages:
I “Explanations” not in terms of input rules
I Only defined for parametric inner systems

Bart Bogaerts (VUB) On Nested Justification Systems ICLP ’22 18/24



Two Characterizations of Semantics Compression

COMPRESSION SEMANTICS

The original semantics of [DBS15]
I For each fact a defined in the inner system
I and each justification J of a

I and each rule (in outer system) with a in its body
I make new rule with a replaced by B(J)

Disadvantages:
I “Explanations” not in terms of input rules
I Only defined for parametric inner systems

Bart Bogaerts (VUB) On Nested Justification Systems ICLP ’22 18/24



Two Characterizations of Semantics Compression

COMPRESSION SEMANTICS

The original semantics of [DBS15]
I For each fact a defined in the inner system
I and each justification J of a

I and each rule (in outer system) with a in its body
I make new rule with a replaced by B(J)

Disadvantages:
I “Explanations” not in terms of input rules
I Only defined for parametric inner systems

Bart Bogaerts (VUB) On Nested Justification Systems ICLP ’22 18/24



Two Characterizations of Semantics Compression

COMPRESSION: EXAMPLE

JS =

BKK :



r ← p, q
∼r ← ∼p
∼r ← ∼q

Bwf :



p← ∼q, r
∼p← q
∼p← ∼r
q ← q
∼q ← ∼q





Compress(JS) =

BKK :


r ← p, q
∼r ← ∼p
∼r ←��∼p f
∼r ← ∼q



Bart Bogaerts (VUB) On Nested Justification Systems ICLP ’22 19/24



Two Characterizations of Semantics Compression

COMPRESSION: EXAMPLE

JS =

BKK :



r ← p, q
∼r ← ∼p
∼r ← ∼q

Bwf :



p← ∼q, r
∼p← q
∼p← ∼r
q ← q
∼q ← ∼q





Compress(JS) =

BKK :


r ← p, q
∼r ← ∼p
∼r ←��∼p f
∼r ← ∼q



Bart Bogaerts (VUB) On Nested Justification Systems ICLP ’22 19/24



Two Characterizations of Semantics Compression

COMPRESSION: EXAMPLE

JS =

BKK :



r ← p, q
∼r ← ∼p
∼r ← ∼q

Bwf :



p← ∼q, r
∼p← q
∼p← ∼r
q ← q
∼q ← ∼q





Compress(JS) =

BKK :


r ← p, q
∼r ← ∼p
∼r ←��∼p f
∼r ← ∼q


p

∼q

∼q

...

r

t

r

Bart Bogaerts (VUB) On Nested Justification Systems ICLP ’22 19/24



Two Characterizations of Semantics Compression

COMPRESSION: EXAMPLE

JS =

BKK :



r ← p, q
∼r ← ∼p
∼r ← ∼q

Bwf :



p← ∼q, r
∼p← q
∼p← ∼r
q ← q
∼q ← ∼q





Compress(JS) =

BKK :


r ← p, q
∼r ← ∼p
∼r ←��∼p f
∼r ← ∼q


p

∼q

∼q

...

r

t

r

Bart Bogaerts (VUB) On Nested Justification Systems ICLP ’22 19/24



Two Characterizations of Semantics Compression

COMPRESSION: EXAMPLE

JS =

BKK :



r ← p, q
∼r ← ∼p
∼r ← ∼q

Bwf :



p← ∼q, r
∼p← q
∼p← ∼r
q ← q
∼q ← ∼q





Compress(JS) =

BKK :


r ← p, q
∼r ← ∼p
∼r ←��∼p f
∼r ← ∼q


p

∼q

∼q

...

r

t

r

Bart Bogaerts (VUB) On Nested Justification Systems ICLP ’22 19/24



Two Characterizations of Semantics Compression

COMPRESSION: EXAMPLE

JS =

BKK :



r ← p, q
∼r ← ∼p
∼r ← ∼q

Bwf :



p← ∼q, r
∼p← q
∼p← ∼r
q ← q
∼q ← ∼q





Compress(JS) =

BKK :


r ← �p t, r, q
∼r ← ∼p
∼r ←��∼p f
∼r ← ∼q


p

∼q

∼q

...

r

t

r

Bart Bogaerts (VUB) On Nested Justification Systems ICLP ’22 19/24



Two Characterizations of Semantics Compression

COMPRESSION: EXAMPLE

JS =

BKK :



r ← p, q
∼r ← ∼p
∼r ← ∼q

Bwf :



p← ∼q, r
∼p← q
∼p← ∼r
q ← q
∼q ← ∼q





Compress(JS) =

BKK :


r ← �p t, r, q
∼r ← ∼p
∼r ←��∼p f
∼r ← ∼q


q

q

... f

Bart Bogaerts (VUB) On Nested Justification Systems ICLP ’22 19/24



Two Characterizations of Semantics Compression

COMPRESSION: EXAMPLE

JS =

BKK :



r ← p, q
∼r ← ∼p
∼r ← ∼q

Bwf :



p← ∼q, r
∼p← q
∼p← ∼r
q ← q
∼q ← ∼q





Compress(JS) =

BKK :


r ← �p t, r, �q f
∼r ← ∼p
∼r ←��∼p f
∼r ← ∼q


q

q

... f

Bart Bogaerts (VUB) On Nested Justification Systems ICLP ’22 19/24



Two Characterizations of Semantics Compression

COMPRESSION: EXAMPLE

JS =

BKK :



r ← p, q
∼r ← ∼p
∼r ← ∼q

Bwf :



p← ∼q, r
∼p← q
∼p← ∼r
q ← q
∼q ← ∼q





Compress(JS) =

BKK :


r ← �p t, r, �q f
∼r ← ∼p
∼r ←��∼p f
∼r ← ∼q


∼p

∼r

∼p

q

q

...

∼r

f

Bart Bogaerts (VUB) On Nested Justification Systems ICLP ’22 19/24



Two Characterizations of Semantics Compression

COMPRESSION: EXAMPLE

JS =

BKK :



r ← p, q
∼r ← ∼p
∼r ← ∼q

Bwf :



p← ∼q, r
∼p← q
∼p← ∼r
q ← q
∼q ← ∼q





Compress(JS) =

BKK :


r ← �p t, r, �q f
∼r ← ∼p
∼r ←��∼p f
∼r ← ∼q


∼p

∼r

∼p

q

q

...

∼r

f

Bart Bogaerts (VUB) On Nested Justification Systems ICLP ’22 19/24



Two Characterizations of Semantics Compression

COMPRESSION: EXAMPLE

JS =

BKK :



r ← p, q
∼r ← ∼p
∼r ← ∼q

Bwf :



p← ∼q, r
∼p← q
∼p← ∼r
q ← q
∼q ← ∼q





Compress(JS) =

BKK :


r ← �p t, r, �q f
∼r ←��∼p∼r
∼r ←��∼p f
∼r ← ∼q


∼p

∼r

∼p

q

q

...

∼r

f

Bart Bogaerts (VUB) On Nested Justification Systems ICLP ’22 19/24



Two Characterizations of Semantics Compression

COMPRESSION: EXAMPLE

JS =

BKK :



r ← p, q
∼r ← ∼p
∼r ← ∼q

Bwf :



p← ∼q, r
∼p← q
∼p← ∼r
q ← q
∼q ← ∼q





Compress(JS) =

BKK :


r ← �p t, r, �q f
∼r ←��∼p∼r
∼r ←��∼p f
∼r ←��∼q t


∼q

∼q

... t

Bart Bogaerts (VUB) On Nested Justification Systems ICLP ’22 19/24



Two Characterizations of Semantics Compression

COMPRESSION: EXAMPLE

JS =

BKK :



r ← p, q
∼r ← ∼p
∼r ← ∼q

Bwf :



p← ∼q, r
∼p← q
∼p← ∼r
q ← q
∼q ← ∼q





Compress(JS) =

BKK :


r ← t, r, f
∼r ← ∼r
∼r ← f
∼r ← t



Bart Bogaerts (VUB) On Nested Justification Systems ICLP ’22 19/24



Two Characterizations of Semantics Merge

MERGE: EXAMPLE

JS =

BKK :



r ← p, q
∼r ← ∼p
∼r ← ∼q

Bwf :



p← ∼q, r
∼p← q
∼p← ∼r
q ← q
∼q ← ∼q





Merge(JS) =

BKK.Bwf :



r ← p, q
∼r ← ∼p
∼r ← ∼q
p← ∼q, r
∼p← q
∼p← ∼r
q ← q
∼q ← ∼q



Bart Bogaerts (VUB) On Nested Justification Systems ICLP ’22 20/24



Two Characterizations of Semantics Merge

MERGE: EXAMPLE

JS =

BKK :



r ← p, q
∼r ← ∼p
∼r ← ∼q

Bwf :



p← ∼q, r
∼p← q
∼p← ∼r
q ← q
∼q ← ∼q





Merge(JS) =

BKK.Bwf :



r ← p, q
∼r ← ∼p
∼r ← ∼q
p← ∼q, r
∼p← q
∼p← ∼r
q ← q
∼q ← ∼q



Bart Bogaerts (VUB) On Nested Justification Systems ICLP ’22 20/24



Two Characterizations of Semantics Merge

MERGE: EXAMPLE

JS =

BKK :



r ← p, q
∼r ← ∼p
∼r ← ∼q

Bwf :



p← ∼q, r
∼p← q
∼p← ∼r
q ← q
∼q ← ∼q





Merge(JS) =

BKK.Bwf :



r ← p, q
∼r ← ∼p
∼r ← ∼q
p← ∼q, r
∼p← q
∼p← ∼r
q ← q
∼q ← ∼q



Bart Bogaerts (VUB) On Nested Justification Systems ICLP ’22 20/24



Two Characterizations of Semantics Merge

THE MERGE BRANCH EVALUATION

How is Br
KK.Bp,q

wf defined?
Take any branch b (using facts from both levels)

1. If b is finite, map to its last element
2. If it contains infinitely many facts defined at the highest level, project onto that level and

use BKK

3. Otherwise, project onto the lowest level and evaluate with Bwf

Example

1. BKK.Bwf (r → p→ r → p→ t) = t
2. BKK.Bwf (r → p→ r → p→ r → p→ . . . ) = BKK(r → r → r → . . . ) = u
3. BKK.Bwf (r → p→ r → p→ ∼q → ∼q → ∼q → . . . )

= Bwf(p→ p→ ∼q → ∼q → ∼q → . . . ) = t
Bart Bogaerts (VUB) On Nested Justification Systems ICLP ’22 21/24



Two Characterizations of Semantics Merge

THE MERGE BRANCH EVALUATION

How is Br
KK.Bp,q

wf defined?
Take any branch b (using facts from both levels)

1. If b is finite, map to its last element
2. If it contains infinitely many facts defined at the highest level, project onto that level and

use BKK

3. Otherwise, project onto the lowest level and evaluate with Bwf

Example

1. BKK.Bwf (r → p→ r → p→ t) = t
2. BKK.Bwf (r → p→ r → p→ r → p→ . . . ) = BKK(r → r → r → . . . ) = u
3. BKK.Bwf (r → p→ r → p→ ∼q → ∼q → ∼q → . . . )

= Bwf(p→ p→ ∼q → ∼q → ∼q → . . . ) = t
Bart Bogaerts (VUB) On Nested Justification Systems ICLP ’22 21/24



Two Characterizations of Semantics Merge

THE MERGE BRANCH EVALUATION

How is Br
KK.Bp,q

wf defined?
Take any branch b (using facts from both levels)

1. If b is finite, map to its last element
2. If it contains infinitely many facts defined at the highest level, project onto that level and

use BKK

3. Otherwise, project onto the lowest level and evaluate with Bwf

Example

1. BKK.Bwf (r → p→ r → p→ t) = t
2. BKK.Bwf (r → p→ r → p→ r → p→ . . . ) = BKK(r → r → r → . . . ) = u
3. BKK.Bwf (r → p→ r → p→ ∼q → ∼q → ∼q → . . . )

= Bwf(p→ p→ ∼q → ∼q → ∼q → . . . ) = t
Bart Bogaerts (VUB) On Nested Justification Systems ICLP ’22 21/24



Two Characterizations of Semantics Merge

THE MERGE BRANCH EVALUATION

How is Br
KK.Bp,q

wf defined?
Take any branch b (using facts from both levels)

1. If b is finite, map to its last element
2. If it contains infinitely many facts defined at the highest level, project onto that level and

use BKK

3. Otherwise, project onto the lowest level and evaluate with Bwf

Example

1. BKK.Bwf (r → p→ r → p→ t) = t
2. BKK.Bwf (r → p→ r → p→ r → p→ . . . ) = BKK(r → r → r → . . . ) = u
3. BKK.Bwf (r → p→ r → p→ ∼q → ∼q → ∼q → . . . )

= Bwf(p→ p→ ∼q → ∼q → ∼q → . . . ) = t
Bart Bogaerts (VUB) On Nested Justification Systems ICLP ’22 21/24



Two Characterizations of Semantics Merge

THE MERGE BRANCH EVALUATION

How is Br
KK.Bp,q

wf defined?
Take any branch b (using facts from both levels)

1. If b is finite, map to its last element
2. If it contains infinitely many facts defined at the highest level, project onto that level and

use BKK

3. Otherwise, project onto the lowest level and evaluate with Bwf

Example

1. BKK.Bwf (r → p→ r → p→ t) = t
2. BKK.Bwf (r → p→ r → p→ r → p→ . . . ) = BKK(r → r → r → . . . ) = u
3. BKK.Bwf (r → p→ r → p→ ∼q → ∼q → ∼q → . . . )

= Bwf(p→ p→ ∼q → ∼q → ∼q → . . . ) = t
Bart Bogaerts (VUB) On Nested Justification Systems ICLP ’22 21/24



Two Characterizations of Semantics Merge

THE MERGE BRANCH EVALUATION

How is Br
KK.Bp,q

wf defined?
Take any branch b (using facts from both levels)

1. If b is finite, map to its last element
2. If it contains infinitely many facts defined at the highest level, project onto that level and

use BKK

3. Otherwise, project onto the lowest level and evaluate with Bwf

Example

1. BKK.Bwf (r → p→ r → p→ t) = t
2. BKK.Bwf (r → p→ r → p→ r → p→ . . . ) = BKK(r → r → r → . . . ) = u
3. BKK.Bwf (r → p→ r → p→ ∼q → ∼q → ∼q → . . . )

= Bwf(p→ p→ ∼q → ∼q → ∼q → . . . ) = t
Bart Bogaerts (VUB) On Nested Justification Systems ICLP ’22 21/24



Two Characterizations of Semantics Merge

THE MERGE BRANCH EVALUATION

How is Br
KK.Bp,q

wf defined?
Take any branch b (using facts from both levels)

1. If b is finite, map to its last element
2. If it contains infinitely many facts defined at the highest level, project onto that level and

use BKK

3. Otherwise, project onto the lowest level and evaluate with Bwf

Example

1. BKK.Bwf (r → p→ r → p→ t) = t
2. BKK.Bwf (r → p→ r → p→ r → p→ . . . ) = BKK(r → r → r → . . . ) = u
3. BKK.Bwf (r → p→ r → p→ ∼q → ∼q → ∼q → . . . )

= Bwf(p→ p→ ∼q → ∼q → ∼q → . . . ) = t
Bart Bogaerts (VUB) On Nested Justification Systems ICLP ’22 21/24



Two Characterizations of Semantics Merge

THE MERGE BRANCH EVALUATION

How is Br
KK.Bp,q

wf defined?
Take any branch b (using facts from both levels)

1. If b is finite, map to its last element
2. If it contains infinitely many facts defined at the highest level, project onto that level and

use BKK

3. Otherwise, project onto the lowest level and evaluate with Bwf

Example

1. BKK.Bwf (r → p→ r → p→ t) = t
2. BKK.Bwf (r → p→ r → p→ r → p→ . . . ) = BKK(r → r → r → . . . ) = u
3. BKK.Bwf (r → p→ r → p→ ∼q → ∼q → ∼q → . . . )

= Bwf(p→ p→ ∼q → ∼q → ∼q → . . . ) = t
Bart Bogaerts (VUB) On Nested Justification Systems ICLP ’22 21/24



Two Characterizations of Semantics Merge

THE MERGE BRANCH EVALUATION

How is Br
KK.Bp,q

wf defined?
Take any branch b (using facts from both levels)

1. If b is finite, map to its last element
2. If it contains infinitely many facts defined at the highest level, project onto that level and

use BKK

3. Otherwise, project onto the lowest level and evaluate with Bwf

Example

1. BKK.Bwf (r → p→ r → p→ t) = t
2. BKK.Bwf (r → p→ r → p→ r → p→ . . . ) = BKK(r → r → r → . . . ) = u
3. BKK.Bwf (r → p→ r → p→ ∼q → ∼q → ∼q → . . . )

= Bwf(p→ p→ ∼q → ∼q → ∼q → . . . ) = t
Bart Bogaerts (VUB) On Nested Justification Systems ICLP ’22 21/24



Two Characterizations of Semantics Merge

THE MERGE BRANCH EVALUATION

How is Br
KK.Bp,q

wf defined?
Take any branch b (using facts from both levels)

1. If b is finite, map to its last element
2. If it contains infinitely many facts defined at the highest level, project onto that level and

use BKK

3. Otherwise, project onto the lowest level and evaluate with Bwf

Example

1. BKK.Bwf (r → p→ r → p→ t) = t
2. BKK.Bwf (r → p→ r → p→ r → p→ . . . ) = BKK(r → r → r → . . . ) = u
3. BKK.Bwf (r → p→ r → p→ ∼q → ∼q → ∼q → . . . )

= Bwf(p→ p→ ∼q → ∼q → ∼q → . . . ) = t
Bart Bogaerts (VUB) On Nested Justification Systems ICLP ’22 21/24



Two Characterizations of Semantics Merge

THE MERGE BRANCH EVALUATION

How is Br
KK.Bp,q

wf defined?
Take any branch b (using facts from both levels)

1. If b is finite, map to its last element
2. If it contains infinitely many facts defined at the highest level, project onto that level and

use BKK

3. Otherwise, project onto the lowest level and evaluate with Bwf

Example

1. BKK.Bwf (r → p→ r → p→ t) = t
2. BKK.Bwf (r → p→ r → p→ r → p→ . . . ) = BKK(r → r → r → . . . ) = u
3. BKK.Bwf (r → p→ r → p→ ∼q → ∼q → ∼q → . . . )

= Bwf(p→ p→ ∼q → ∼q → ∼q → . . . ) = t
Bart Bogaerts (VUB) On Nested Justification Systems ICLP ’22 21/24



Two Characterizations of Semantics Equivalence

EQUIVALENCE OF Compress AND Merge

Theorem
For almost all compressible systems, Compress(JS) and Merge(JS) are equivalent.

Bart Bogaerts (VUB) On Nested Justification Systems ICLP ’22 22/24



Two Characterizations of Semantics Equivalence

EQUIVALENCE: PROOF IDEA

Merge(JS) =

BKK.Bwf :



r ← p, q
∼r ← ∼p
∼r ← ∼q
p← ∼q, r
∼p← q
∼p← ∼r
q ← q
∼q ← ∼q


Compress(JS) =

BKK :


r ← t, r, f
∼r ← t
∼r ← ∼r
∼r ← f



Shrink −1 = Expand r

q

q

q

q

...

p

∼q

∼q

∼q

...

r

q

q

...

p

∼q

...

r

. . .. .
.

Bart Bogaerts (VUB) On Nested Justification Systems ICLP ’22 23/24



Two Characterizations of Semantics Equivalence

EQUIVALENCE: PROOF IDEA

Merge(JS) =

BKK.Bwf :



r ← p, q
∼r ← ∼p
∼r ← ∼q
p← ∼q, r
∼p← q
∼p← ∼r
q ← q
∼q ← ∼q


Compress(JS) =

BKK :


r ← t, r, f
∼r ← t
∼r ← ∼r
∼r ← f



Shrink −1 = Expand r

q

q

q

q

...

p

∼q

∼q

∼q

...

r

q

q

...

p

∼q

...

r

. . .. .
.

Bart Bogaerts (VUB) On Nested Justification Systems ICLP ’22 23/24



Two Characterizations of Semantics Equivalence

EQUIVALENCE: PROOF IDEA

Merge(JS) =

BKK.Bwf :



r ← p, q
∼r ← ∼p
∼r ← ∼q
p← ∼q, r
∼p← q
∼p← ∼r
q ← q
∼q ← ∼q


Compress(JS) =

BKK :


r ← t, r, f
∼r ← t
∼r ← ∼r
∼r ← f



Shrink −1 = Expand r

q

q

q

q

...

p

∼q

∼q

∼q

...

r

q

q

...

p

∼q

...

r

. . .. .
.

Bart Bogaerts (VUB) On Nested Justification Systems ICLP ’22 23/24



Two Characterizations of Semantics Equivalence

EQUIVALENCE: PROOF IDEA

Merge(JS) =

BKK.Bwf :



r ← p, q
∼r ← ∼p
∼r ← ∼q
p← ∼q, r
∼p← q
∼p← ∼r
q ← q
∼q ← ∼q


Compress(JS) =

BKK :


r ← t, r, f
∼r ← t
∼r ← ∼r
∼r ← f



Shrink −1 = Expand r

q

q

q

q

...

p

∼q

∼q

∼q

...

r

q

q

...

p

∼q

...

r

. . .. .
.

Bart Bogaerts (VUB) On Nested Justification Systems ICLP ’22 23/24



Two Characterizations of Semantics Equivalence

EQUIVALENCE: PROOF IDEA

Merge(JS) =

BKK.Bwf :



r ← p, q
∼r ← ∼p
∼r ← ∼q
p← ∼q, r
∼p← q
∼p← ∼r
q ← q
∼q ← ∼q


Compress(JS) =

BKK :


r ← t, r, f
∼r ← t
∼r ← ∼r
∼r ← f



Shrink −1 = Expand r

q

q

q

q

...

p

∼q

∼q

∼q

...

r

q

q

...

p

∼q

...

r

. . .. .
.

Bart Bogaerts (VUB) On Nested Justification Systems ICLP ’22 23/24



Two Characterizations of Semantics Equivalence

EQUIVALENCE: PROOF IDEA

Merge(JS) =

BKK.Bwf :



r ← p, q
∼r ← ∼p
∼r ← ∼q
p← ∼q, r
∼p← q
∼p← ∼r
q ← q
∼q ← ∼q


Compress(JS) =

BKK :


r ← t, r, f
∼r ← t
∼r ← ∼r
∼r ← f



Shrink −1 = Expand r

q

q

q

q

...

p

∼q

∼q

∼q

...

r

q

q

...

p

∼q

...

r

. . .. .
.

Bart Bogaerts (VUB) On Nested Justification Systems ICLP ’22 23/24



Two Characterizations of Semantics Equivalence

EQUIVALENCE: PROOF IDEA

Merge(JS) =

BKK.Bwf :



r ← p, q
∼r ← ∼p
∼r ← ∼q
p← ∼q, r
∼p← q
∼p← ∼r
q ← q
∼q ← ∼q


Compress(JS) =

BKK :


r ← t, r, f
∼r ← t
∼r ← ∼r
∼r ← f



Shrink −1 = Expand r

q

q

q

q

...

p

∼q

∼q

∼q

...

r

q

q

...

p

∼q

...

r

. . .. .
.

Bart Bogaerts (VUB) On Nested Justification Systems ICLP ’22 23/24



Two Characterizations of Semantics Equivalence

EQUIVALENCE: PROOF IDEA

Merge(JS) =

BKK.Bwf :



r ← p, q
∼r ← ∼p
∼r ← ∼q
p← ∼q, r
∼p← q
∼p← ∼r
q ← q
∼q ← ∼q


Compress(JS) =

BKK :


r ← t, r, f
∼r ← t
∼r ← ∼r
∼r ← f



Shrink −1 = Expand r

q

q

q

q

...

p

∼q

∼q

∼q

...

r

q

q

...

p

∼q

...

r

. . .. .
.

Bart Bogaerts (VUB) On Nested Justification Systems ICLP ’22 23/24



Two Characterizations of Semantics Equivalence

EQUIVALENCE: PROOF IDEA

Merge(JS) =

BKK.Bwf :



r ← p, q
∼r ← ∼p
∼r ← ∼q
p← ∼q, r
∼p← q
∼p← ∼r
q ← q
∼q ← ∼q


Compress(JS) =

BKK :


r ← t, r, f
∼r ← t
∼r ← ∼r
∼r ← f



Shrink −1 = Expand r

q

q

q

q

...

p

∼q

∼q

∼q

...

r

q

q

...

p

∼q

...

r

. . .. .
.

Bart Bogaerts (VUB) On Nested Justification Systems ICLP ’22 23/24



Two Characterizations of Semantics Equivalence

EQUIVALENCE: PROOF IDEA

Merge(JS) =

BKK.Bwf :



r ← p, q
∼r ← ∼p
∼r ← ∼q
p← ∼q, r
∼p← q
∼p← ∼r
q ← q
∼q ← ∼q


Compress(JS) =

BKK :


r ← t, r, f
∼r ← t
∼r ← ∼r
∼r ← f



Shrink −1 = Expand r

q

q

q

q

...

p

∼q

∼q

∼q

...

r

q

q

...

p

∼q

...

r

. . .. .
.

Bart Bogaerts (VUB) On Nested Justification Systems ICLP ’22 23/24



Two Characterizations of Semantics Equivalence

EQUIVALENCE: PROOF IDEA

Merge(JS) =

BKK.Bwf :



r ← p, q
∼r ← ∼p
∼r ← ∼q
p← ∼q, r
∼p← q
∼p← ∼r
q ← q
∼q ← ∼q


Compress(JS) =

BKK :


r ← t, r, f
∼r ← t
∼r ← ∼r
∼r ← f



Shrink −1 = Expand r

q

q

q

q

...

p

∼q

∼q

∼q

...

r

q

q

...

p

∼q

...

r

. . .. .
.

Bart Bogaerts (VUB) On Nested Justification Systems ICLP ’22 23/24



Two Characterizations of Semantics Equivalence

EQUIVALENCE: PROOF IDEA

Merge(JS) =

BKK.Bwf :



r ← p, q
∼r ← ∼p
∼r ← ∼q
p← ∼q, r
∼p← q
∼p← ∼r
q ← q
∼q ← ∼q


Compress(JS) =

BKK :


r ← t, r, f
∼r ← t
∼r ← ∼r
∼r ← f



Shrink −1 = Expand r

f

q

q

q

...

p

∼q

∼q

∼q

...

r

q

q

...

p

∼q

...

r

. . .. .
.

Bart Bogaerts (VUB) On Nested Justification Systems ICLP ’22 23/24



Two Characterizations of Semantics Equivalence

EQUIVALENCE: PROOF IDEA

Merge(JS) =

BKK.Bwf :



r ← p, q
∼r ← ∼p
∼r ← ∼q
p← ∼q, r
∼p← q
∼p← ∼r
q ← q
∼q ← ∼q


Compress(JS) =

BKK :


r ← t, r, f
∼r ← t
∼r ← ∼r
∼r ← f



Shrink −1 = Expand r

f

q

q

q

...

p

∼q

∼q

∼q

...

r

q

q

...

p

∼q

...

r

. . .. .
.

Bart Bogaerts (VUB) On Nested Justification Systems ICLP ’22 23/24



Two Characterizations of Semantics Equivalence

EQUIVALENCE: PROOF IDEA

Merge(JS) =

BKK.Bwf :



r ← p, q
∼r ← ∼p
∼r ← ∼q
p← ∼q, r
∼p← q
∼p← ∼r
q ← q
∼q ← ∼q


Compress(JS) =

BKK :


r ← t, r, f
∼r ← t
∼r ← ∼r
∼r ← f



Shrink −1 = Expand r

f

q

q

q

...

p

t

∼q

∼q

...

r

q

q

...

p

∼q

...

r

. . .. .
.

Bart Bogaerts (VUB) On Nested Justification Systems ICLP ’22 23/24



Two Characterizations of Semantics Equivalence

EQUIVALENCE: PROOF IDEA

Merge(JS) =

BKK.Bwf :



r ← p, q
∼r ← ∼p
∼r ← ∼q
p← ∼q, r
∼p← q
∼p← ∼r
q ← q
∼q ← ∼q


Compress(JS) =

BKK :


r ← t, r, f
∼r ← t
∼r ← ∼r
∼r ← f



Shrink −1 = Expand r

f

q

q

q

...

p

t

∼q

∼q

...

r

q

q

...

p

∼q

...

r

. . .. .
.

Bart Bogaerts (VUB) On Nested Justification Systems ICLP ’22 23/24



Two Characterizations of Semantics Equivalence

EQUIVALENCE: PROOF IDEA

Merge(JS) =

BKK.Bwf :



r ← p, q
∼r ← ∼p
∼r ← ∼q
p← ∼q, r
∼p← q
∼p← ∼r
q ← q
∼q ← ∼q


Compress(JS) =

BKK :


r ← t, r, f
∼r ← t
∼r ← ∼r
∼r ← f



Shrink −1 = Expand r

f

q

q

q

...

p

t

∼q

∼q

...

r

f

q

...

p

t

...

r

. . .. .
.

Bart Bogaerts (VUB) On Nested Justification Systems ICLP ’22 23/24



Two Characterizations of Semantics Equivalence

EQUIVALENCE: PROOF IDEA

Merge(JS) =

BKK.Bwf :



r ← p, q
∼r ← ∼p
∼r ← ∼q
p← ∼q, r
∼p← q
∼p← ∼r
q ← q
∼q ← ∼q


Compress(JS) =

BKK :


r ← t, r, f
∼r ← t
∼r ← ∼r
∼r ← f



Shrink −1 = Expand r

f

q

q

q

...

p

t

∼q

∼q

...

r

f

q

...

p

t

...

r

. . .. .
.

Bart Bogaerts (VUB) On Nested Justification Systems ICLP ’22 23/24



Conclusion

OUTLINE

1. Justification Theory: Motivation & Definitions

2. Two Flavours of Justifications

3. Nested Justification Systems
1. Motivation
2. Definition

4. Two Characterizations of Semantics
1. Compression
2. Merge
3. Equivalence

5. Conclusion

Bart Bogaerts (VUB) On Nested Justification Systems ICLP ’22



Conclusion

CONCLUSION

I Two characterizations of semantics of
nested justification systems

I Important for practical applicability of
nesting

I Consistency of nested systems

Open Question
Are Merge and Compress equivalent in the
graph-like setting?

Interested? I’m looking for good
postdocs/PhD students

Thanks for your attention!

Bart Bogaerts (VUB) On Nested Justification Systems ICLP ’22 24/24



Conclusion

CONCLUSION

I Two characterizations of semantics of
nested justification systems

I Important for practical applicability of
nesting

I Consistency of nested systems

Open Question
Are Merge and Compress equivalent in the
graph-like setting?

Interested? I’m looking for good
postdocs/PhD students

Thanks for your attention!

Bart Bogaerts (VUB) On Nested Justification Systems ICLP ’22 24/24



Conclusion

CONCLUSION

I Two characterizations of semantics of
nested justification systems

I Important for practical applicability of
nesting

I Consistency of nested systems

Open Question
Are Merge and Compress equivalent in the
graph-like setting?

Interested? I’m looking for good
postdocs/PhD students

Thanks for your attention!

Bart Bogaerts (VUB) On Nested Justification Systems ICLP ’22 24/24



Conclusion

CONCLUSION

I Two characterizations of semantics of
nested justification systems

I Important for practical applicability of
nesting

I Consistency of nested systems

Open Question
Are Merge and Compress equivalent in the
graph-like setting?

Interested? I’m looking for good
postdocs/PhD students

Thanks for your attention!

Bart Bogaerts (VUB) On Nested Justification Systems ICLP ’22 24/24



Conclusion

CONCLUSION

I Two characterizations of semantics of
nested justification systems

I Important for practical applicability of
nesting

I Consistency of nested systems

Open Question
Are Merge and Compress equivalent in the
graph-like setting?

Interested? I’m looking for good
postdocs/PhD students

Thanks for your attention!

Bart Bogaerts (VUB) On Nested Justification Systems ICLP ’22 24/24



Conclusion

CONCLUSION

I Two characterizations of semantics of
nested justification systems

I Important for practical applicability of
nesting

I Consistency of nested systems

Open Question
Are Merge and Compress equivalent in the
graph-like setting?

Interested? I’m looking for good
postdocs/PhD students

Thanks for your attention!

Bart Bogaerts (VUB) On Nested Justification Systems ICLP ’22 24/24



REFERENCES

[DBS15] Marc Denecker, Gerhard Brewka, and Hannes Strass. A formal theory of justifications. In Francesco Calimeri,
Giovambattista Ianni, and Miros law Truszczyński, editors, Logic Programming and Nonmonotonic Reasoning
- 13th International Conference, LPNMR 2015, Lexington, KY, USA, September 27-30, 2015. Proceedings,
volume 9345 of Lecture Notes in Computer Science, pages 250–264. Springer, 2015.

[Den93] Marc Denecker. Knowledge representation and reasoning in incomplete logic programming. PhD thesis,
K.U.Leuven, Leuven, Belgium, September 1993.

[Mar09] Maarten Mariën. Model Generation for ID-Logic. PhD thesis, Department of Computer Science, KU Leuven,
Belgium, February 2009.

[MBD20] Simon Marynissen, Bart Bogaerts, and Marc Denecker. Exploiting game theory for analysing justifications.
Theory Pract. Log. Program., 20(6):880–894, 2020.

[MBD21] Simon Marynissen, Bart Bogaerts, and Marc Denecker. On the relation between approximation fixpoint
theory and justification theory. In Zhi-Hua Zhou, editor, Proceedings of the Thirtieth International Joint
Conference on Artificial Intelligence, IJCAI 2021, Virtual Event / Montreal, Canada, 19-27 August 2021,
pages 1973–1980. ijcai.org, 2021.

Bart Bogaerts (VUB) On Nested Justification Systems ICLP ’22 25/24



REFERENCES

[MBDH22] Simon Marynissen, Bart Bogaerts, Marc Denecker, and Jesse Heyninck. On nested justification systems.
Theory Pract. Log. Program., 22, 2022. To appear (Accepted for ICLP 2022 special issue in TPLP).

[MPBD18] Simon Marynissen, Niko Passchyn, Bart Bogaerts, and Marc Denecker. Consistency in justification theory. In
Proceedings of 17th International Workshop on Non-Monotonic Reasoning (NMR 2018), Tempe, Arizona,
USA, Oct. 27-29, 2018, pages 41–52. AAAI Press 2018, 2018.

Bart Bogaerts (VUB) On Nested Justification Systems ICLP ’22 26/24


	Summary
	Justification Theory: Motivation & Definitions
	Two Flavours of Justifications
	Nested Justification Systems
	Motivation
	Definition

	Two Characterizations of Semantics
	Compression
	Merge
	Equivalence

	Conclusion
	Appendix

